Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation

2016 ◽  
Vol 110 ◽  
pp. 173-183 ◽  
Author(s):  
Mohammad H. Hasan ◽  
Fadi Alsaleem ◽  
Mostafa Rafaie
2016 ◽  
Vol 50 (1) ◽  
pp. 138-144
Author(s):  
Patrick J Ruhl ◽  
Robert N Chapman ◽  
John B. Dunning

2011 ◽  
Vol 243-249 ◽  
pp. 4905-4908
Author(s):  
Xue Min Sui ◽  
Xu Zhang ◽  
Guang Hui Han

Relative humidity is an important micro-climate parameter in radiant cooling environment. Based on the human thermal comfort model, this paper studied the effect on PMV index of relative humidity, and studied the relationship of low mean radiant temperature and relative humidity, drew the appropriate design range of indoor relative humidity for radiant cooling systems.The results show that high relative humidity can compensate for the impact on thermal comfort of low mean radiant temperature, on the premise of achieving the same thermal comfort requirements. However, because of the limited compensation range of relative humidity, together with the constraints for it due to anti-condensation of radiant terminal devices, the design range of relative humidity should not be improved, and it can still use the traditional air-conditioning design standards.


2018 ◽  
Vol 7 (3) ◽  
pp. 568-578 ◽  
Author(s):  
Yingying Chen ◽  
Fengji Luo ◽  
Zhaoyang Dong ◽  
Ke Meng ◽  
Gianluca Ranzi ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 619
Author(s):  
Jinsong Liu ◽  
Isak Worre Foged ◽  
Thomas B. Moeslund

Satisfactory indoor thermal environments can improve working efficiencies of office staff. To build such satisfactory indoor microclimates, individual thermal comfort assessment is important, for which personal clothing insulation rate (Icl) and metabolic rate (M) need to be estimated dynamically. Therefore, this paper proposes a vision-based method. Specifically, a human tracking-by-detection framework is implemented to acquire each person’s clothing status (short-sleeved, long-sleeved), key posture (sitting, standing), and bounding box information simultaneously. The clothing status together with a key body points detector locate the person’s skin region and clothes region, allowing the measurement of skin temperature (Ts) and clothes temperature (Tc), and realizing the calculation of Icl from Ts and Tc. The key posture and the bounding box change across time can category the person’s activity intensity into a corresponding level, from which the M value is estimated. Moreover, we have collected a multi-person thermal dataset to evaluate the method. The tracking-by-detection framework achieves a mAP50 (Mean Average Precision) rate of 89.1% and a MOTA (Multiple Object Tracking Accuracy) rate of 99.5%. The Icl estimation module gets an accuracy of 96.2% in locating skin and clothes. The M estimation module obtains a classification rate of 95.6% in categorizing activity level. All of these prove the usefulness of the proposed method in a multi-person scenario of real-life applications.


2020 ◽  
Vol 211 ◽  
pp. 109795 ◽  
Author(s):  
Xiang Zhou ◽  
Ling Xu ◽  
Jingsi Zhang ◽  
Bing Niu ◽  
Maohui Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document