scholarly journals Perceptive and physiological adaptation of migrants with different thermal experiences: A long-term climate chamber experiment

2022 ◽  
pp. 108727
Author(s):  
Yu Dong ◽  
Yuan Shi ◽  
Yanfeng Liu ◽  
Ricardo Forgiarini Rupp ◽  
Jørn Toftum
2021 ◽  
Vol 2069 (1) ◽  
pp. 012237
Author(s):  
Yu Dong ◽  
Yuan Shi ◽  
Yanfeng Liu ◽  
Jørn Toftum

Abstract Migration between different climate regions may change people’s thermal experience and their thermal adaptation. However, few studies have explored the thermal adaptation process and the suitable indoor thermal environment of migrants. In this study, we conducted a long-term tracking comparative experiment on thermal adaptation of migrants moving from severe cold (SC) regions, hot summer and cold winter (HSCW) regions, and hot summer and warm winter (HSWW) regions to cold region of China. A two-year climate chamber experiment was conducted to follow migrants’ progressive thermal adaptation, such as different weeks, months and seasons after they migrated. The results show that the thermal sensation of migrants was significantly associated with their origin, the time after migration and air temperature. In addition, with the increase time after migration, the thermal sensitivity of HSCW and SC migrants showed a significant upward and downward trend, respectively. Two years after migration, the thermal comfort limits of migrants from SC, HSWW and HSCW were almost identical at 23.5-27.8°C, 23.8-27.8°C, and 23.5-27.6°C. The results provides insight to the progression of thermal adaptation and helpful to guide the design of indoor climate for immigrants with different thermal experiences.


2021 ◽  
pp. 132-140
Author(s):  
Peter Juras ◽  
Pavol Durica ◽  
Marek Bartko
Keyword(s):  

2017 ◽  
Vol 312 (5) ◽  
pp. E437-E446 ◽  
Author(s):  
Svenia Schnyder ◽  
Kristoffer Svensson ◽  
Bettina Cardel ◽  
Christoph Handschin

Low-carbohydrate/high-fat (LCHF) diets are increasingly popular dietary interventions for body weight control and as treatment for different pathological conditions. However, the mechanisms of action are still poorly understood, in particular, in long-term administration. Besides liver, brain, and heart, skeletal muscle is one of the major organs involved in the regulation of physiological and pathophysiological ketosis. We assessed the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle of male wild-type control and PGC-1α muscle-specific knockout mice upon 12 wk of LCHF diet feeding. Interestingly, LCHF diet administration increased oxygen consumption in a muscle PGC-1α-dependent manner, concomitant with a blunted transcriptional induction of genes involved in fatty acid oxidation and impairment in exercise performance. These data reveal a new role for muscle PGC-1α in regulating the physiological adaptation to long-term LCHF diet administration.


2021 ◽  
Vol 18 (19) ◽  
pp. 5363-5380
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotope composition of leaf-wax-derived biomarkers, e.g., long-chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimate. However, a direct reconstruction of the isotope composition of source water based on δ2Hn-alkane alone is challenging due to the enrichment of heavy isotopes during evaporation. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this limitation and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of Eucalyptus globulus, Vicia faba, and Brassica oleracea, which grew under controlled conditions. We addressed the questions of (i) whether δ2Hn-alkane and δ18Osugar values allow reconstructions of leaf water isotope composition, (ii) how accurately the reconstructed leaf water isotope composition enables relative humidity (RH) reconstruction, and (iii) whether the coupling of δ2Hn-alkane and δ18Osugar enables a robust source water calculation. For all investigated species, the n-alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. Regarding hemicellulose-derived monosaccharides, arabinose and xylose were most abundant, and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf water and δ18Oleaf water, respectively (r2=0.45 and 0.85, respectively; p<0.001, n=24). Mean fractionation factors between biomarkers and leaf water were found to be −156 ‰ (ranging from −133 ‰ to −192 ‰) for εn-alkane/leaf water and +27.3 ‰ (ranging from +23.0 ‰ to 32.3 ‰) for εsugar/leaf water, respectively. Modeled RHair values from a Craig–Gordon model using measured Tair, δ2Hleaf water and δ18Oleaf water as input correlate highly significantly with modeled RHair values (R2=0.84, p<0.001, RMSE = 6 %). When coupling δ2Hn-alkane and δ18Osugar values, the correlation of modeled RHair values with measured RHair values is weaker but still highly significant, with R2=0.54 (p<0.001, RMSE = 10 %). Finally, the reconstructed source water isotope composition (δ2Hs and δ18Os) as calculated from our coupled approach matches the source water in the climate chamber experiment (δ2Htank water and δ18Otank water). This highlights the great potential of the coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach for paleoclimate and relative humidity reconstructions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephanie S. Sloley ◽  
Bevan S. Main ◽  
Charisse N. Winston ◽  
Alex C. Harvey ◽  
Alice Kaganovich ◽  
...  

AbstractRepeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact. Electrophysiological analysis shows that high frequency head impacts cause chronic modification of the AMPA/NMDA ratio in neurons that underlie the changes to cognition. To demonstrate that synaptic adaptation is caused by head impact-induced glutamate release, we pretreated mice with memantine prior to head impact. Memantine prevents the development of the key transcriptomic and electrophysiological signatures of high frequency head impact, and averts cognitive dysfunction. These data reveal synapses as a target of high frequency head impact in human and mouse brain, and that this physiological adaptation in response to head impact is sufficient to induce chronic cognitive impairment in mice.


2009 ◽  
pp. 57-67
Author(s):  
G Raffai ◽  
C Csekő ◽  
L Kocsis ◽  
L Dézsi ◽  
E Monos

Microgravity or simulated microgravity induces acute and chronic cardiovascular responses, whose mechanism is pivotal for understanding of physiological adaptation and pathophysiological consequences. We investigated hemodynamic responses of conscious Wistar rats to 45º head-down tilt (HDT) for 7 days. Arterial blood pressure (BP) was recorded by telemetry. Heart rate (HR), spectral properties and the spontaneous baroreflex sensitivity (sBRS) were calculated. Head-up tilt (HUT) was applied for 2 h before and after HDT to assess the degree of any possible cardiovascular deconditioning. Horizontal control BP and HR were 112.5±2.8 mmHg and 344.7±10 bpm, respectively. HDT elicited an elevation in BP and HR by 8.3 % and 8.8 %, respectively, in less than 1 h. These elevations in BP and HR were maintained for 2 and 3 days, respectively, and then normalized. Heart rate variability was unchanged, while sBRS was permanently reduced from the beginning of HDT (1.01±0.08 vs. 0.74±0.05 ms/mmHg). HUT tests before and after HDT resulted in BP elevations (6.9 vs. 11.6 %) and sBRS reduction (0.44 vs. 0.37 ms/mmHg), respectively. The pressor response during the post-HDT HUT test was accompanied by tachycardia (13.7 %). In conclusion, chronic HDT does not lead to symptoms of cardiovascular deconditioning. However the depressed sBRS and tachycardic response seen during the post-HDT HUT test may indicate disturbances in cardiovascular control.


Reproduction ◽  
2021 ◽  
Author(s):  
Afsaneh Khoshkerdar ◽  
Ece Eryasar ◽  
Hannah L Morgan ◽  
Adam J Watkins

Pregnancy represents a time of dramatic physiological adaptation by the mother in which dramatic changes in maternal cardiovascular, metabolic and immune systems occur. These adaptations, initiated from the earliest stages of gestation, are crucial for the implantation and continued development of the embryo, the establishment of the placenta and the growth of the fetus. Impairments in the normal adaptation of the maternal cardiovascular, metabolic and immune systems underlie the aetiology of gestational disorders such as preeclampsia and gestational diabetes. Studies have shown that the development of such gestational complications not only affects the well-being of the mother but also the short- and long-term health of her offspring. While the connection between maternal lifestyle factors and the development of gestational disorders such as preeclampsia and gestational diabetes has been studied in detail, the link between a father’s lifestyle and the well-being of the mother during pregnancy has received less attention. In this review we will explore the evidence that a range of paternal factors, such as age and diet, at the time of conception can not only affect the development of his offspring, but also the well-being of the mother during pregnancy. In addition, we will examine the sperm- and seminal plasma-specific mechanisms that connect the health of the father with that of the mother and his offspring.


Sign in / Sign up

Export Citation Format

Share Document