scholarly journals Thermal comfort environment for migrants: a long-term follow-up climate chamber experiment

2021 ◽  
Vol 2069 (1) ◽  
pp. 012237
Author(s):  
Yu Dong ◽  
Yuan Shi ◽  
Yanfeng Liu ◽  
Jørn Toftum

Abstract Migration between different climate regions may change people’s thermal experience and their thermal adaptation. However, few studies have explored the thermal adaptation process and the suitable indoor thermal environment of migrants. In this study, we conducted a long-term tracking comparative experiment on thermal adaptation of migrants moving from severe cold (SC) regions, hot summer and cold winter (HSCW) regions, and hot summer and warm winter (HSWW) regions to cold region of China. A two-year climate chamber experiment was conducted to follow migrants’ progressive thermal adaptation, such as different weeks, months and seasons after they migrated. The results show that the thermal sensation of migrants was significantly associated with their origin, the time after migration and air temperature. In addition, with the increase time after migration, the thermal sensitivity of HSCW and SC migrants showed a significant upward and downward trend, respectively. Two years after migration, the thermal comfort limits of migrants from SC, HSWW and HSCW were almost identical at 23.5-27.8°C, 23.8-27.8°C, and 23.5-27.6°C. The results provides insight to the progression of thermal adaptation and helpful to guide the design of indoor climate for immigrants with different thermal experiences.

2020 ◽  
Vol 12 (21) ◽  
pp. 9284
Author(s):  
Jiao Xue ◽  
Xiao Hu ◽  
Shu Nuke Sani ◽  
Yuanyuan Wu ◽  
Xinyu Li ◽  
...  

Thermally comfortable outdoor spaces have contributed to high-quality urban living. In order to provide a further understanding of the influences of gender and long-term thermal history on outdoor thermal comfort, this study conducted field surveys at a university campus in Shanghai, China by carrying out microclimatic monitoring and subjective questionnaires from May to October, 2019. The analysis of collected data found that, during our survey, 57% of the occupants felt comfortable overall and 40–60% of them perceived the microclimate variables (air temperature, humidity, solar radiation, and wind speed) as “neutral”. The universal thermal climate index (UTCI) provided a better correlation with occupant thermal sensation than the physiologically equivalent temperature (PET). Females were more sensitive to the outdoor thermal environment than males. Older age led to lower thermal sensation, but the thermal sensitivities for age groups of <20, 20–50, and >50 were similar. Occupants who had resided in Shanghai for a longer period showed higher overall comfort rating and lower thermal sensation. Interviewees who came from hot summer and cold winter climate regions were less effected by the change of UTCI than those from severe cold or cold climate regions.


2017 ◽  
Vol 1 (T4) ◽  
pp. 232-240
Author(s):  
Nam Thi Que Nguyen ◽  
Nam Thi Que Nguyen ◽  
Thanh Cong Tran

Thermal comfort is a parameter to assess environmental indoor quality which affects especially performance of students. A cross-sectional study was conducted in classrooms at a university campus in Ho Chi Minh City to assess the thermal condition during the class time. Microclimate parameters were measured at the same time when students answered the survey on their thermal sensation and acceptability of the indoor climate. Objective data analysis from adaptive PMV model for non-air-conditioned buildings revealed that none of classes had the thermal condition were in the comfort zone of TCVN 7438:2004, coinciding with the subjective result from the surveys. The research showed that 72 percent of the 472 students did not accept the thermal environment and 91.3 percent of students preferred cooler. The suggested neutral temperature was 29.4 oC, the derived from the linear regression between adaptive Predicted Mean Vote (aPMV) and operative temperature (To).


2020 ◽  
Vol 12 (21) ◽  
pp. 8886
Author(s):  
Milen Balbis-Morejón ◽  
Javier M. Rey-Hernández ◽  
Carlos Amaris-Castilla ◽  
Eloy Velasco-Gómez ◽  
Julio F. San José-Alonso ◽  
...  

This study presents the evaluation of the performance and acceptability of thermal comfort by students in the classrooms of a university building with minisplit-type air-conditioning systems, in a tropical climate. To carry out the study, temperature and humidity measurements were recorded, both outside and inside the selected classrooms, while the students were asked to complete thermal surveys on site. The survey model is based on the template proposed by Fanger and it was applied to a total number of 584 students. In each classroom, the Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) were estimated according to Fanger’s methodology, as well as the Thermal Sensation Vote (TSV) and the Actual Percentage Dissatisfied (APD), which were obtained from the measurements and the surveys. The results of this study showed that the PMV values, although they may vary with the insulation of the clothing, do not affect the TSV. Furthermore, comparing PMV vs. TSV scores, a 2 °C to 3 °C difference in operating temperature was found, whereby the thermal sensitivity for TSV was colder, so it could be assumed that the PMV model overestimates the thermal sensitivity of students in low-temperature conditions. In addition, an acceptability by 90% with thermal preferences between 23 °C and 24 °C were also found. These results indicate that it is possible to increase the temperature set point in minisplit-type air-conditioning system from 4 °C to 7 °C with respect to the currently set temperatures, without affecting the acceptability of the thermal environment to the students in the building.


2019 ◽  
Vol 111 ◽  
pp. 06049
Author(s):  
Weiping Hong ◽  
Junjie Liu ◽  
Jingjing Pei ◽  
Dayi Lai

Sleep thermal comfort greatly impacts the quality of sleep. For residents from different climate regions, their level of sleep thermal comfort may have a large difference due to the variations in climate, and other adaptive factors such as the changes in bedding system insulation, the use of air conditioners, and the opening of windows. To study the thermal comfort and adaptive behaviors of Chinese residents in different regions during sleeping period, this study conducted a long-term survey in nine cities in China from February 2018 to September 2018. For northern residents, they achieved a slight higher than neutral sleep thermal sensation in winter due to the use of central heating system. In summer, the sleep thermal sensation of severe cold (SC) region residents had a significant increase. In the south, although without central heating in winter, southern residents maintained a near neutral thermal sensation, partly because of the high bedding system insulation. Although the summer night outdoor air temperature was high in hot summer and cold winter (HSCW) and hot summer and warm winter (HSWW) regions, the occupants from the two regions actively used the air conditioners to help achieving sleep thermal comfort. The results of this study provide valuable information for designers, researchers, and policy makers to create a comfortable nighttime thermal environment in China.


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 90
Author(s):  
Siliang Lu ◽  
Erica Cochran Hameen

Heating, ventilation and air-conditioning (HVAC) systems play a key role in shaping office environments. However, open-plan office buildings nowadays are also faced with problems like unnecessary energy waste and an unsatisfactory shared indoor thermal environment. Therefore, it is significant to develop a new paradigm of an HVAC system framework so that everyone could work under their preferred thermal environment and the system can achieve higher energy efficiency such as task ambient conditioning system (TAC). However, current task conditioning systems are not responsive to personal thermal comfort dynamically. Hence, this research aims to develop a dynamic task conditioning system featuring personal thermal comfort models with machine learning and the wireless non-intrusive sensing system. In order to evaluate the proposed task conditioning system performance, a field study was conducted in a shared office space in Shanghai from July to August. As a result, personal thermal comfort models with indoor air temperature, relative humidity and cheek (side face) skin temperature have better performances than baseline models with indoor air temperature only. Moreover, compared to personal thermal satisfaction predictions, 90% of subjects have better performances in thermal sensation predictions. Therefore, personal thermal comfort models could be further implemented into the task conditioning control of TAC systems.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 769 ◽  
Author(s):  
Fabio Fantozzi ◽  
Giulia Lamberti

In previous years, providing comfort in indoor environments has become a major question for researchers. Thus, indoor environmental quality (IEQ)—concerning the aspects of air quality, thermal comfort, visual and acoustical quality—assumed a crucial role. Considering sport facilities, the evaluation of the thermal environment is one of the main issues that should be faced, as it may interfere with athletes’ performance and health. Thus, the necessity of a review comprehending the existing knowledge regarding the evaluation of the thermal environment and its application to sport facilities becomes increasingly relevant. This paper has the purpose to consolidate the aspects related to thermal comfort and their application to sport practice, through a deep study concerning the engineering, physiological, and psychological approaches to thermal comfort, a review of the main standards on the topic and an analysis of the methodologies and the models used by researchers to determine the thermal sensation of sport facilities’ occupants. Therefore, this review provides the basis for future research on the determination of thermal comfort in indoor sport facilities located in moderate environments.


2019 ◽  
Vol 887 ◽  
pp. 428-434
Author(s):  
Dorcas A. Ayeni ◽  
Olaniyi O. Aluko ◽  
Morisade O. Adegbie

Man requires a thermal environment that is within the range of his adaptive capacity and if this fluctuates outside the normal, a reaction is required beyond its adaptive capacity which results to health challenges. Therefore, the aim of building design in the tropical region is to minimize the heat gain indoors and enhance evaporative cooling of the occupants of the space so as to achieve thermal comfort. In most cases, the passive technologies are not adequate in moderating indoor climate for human comfort thereby relying on active energy technique to provide the needed comfort for the building users. The need for the use of vegetation as a panacea for achieving comfortable indoor thermal conditions in housing is recognised by architects globally. However, the practice by architects in Nigeria is still at the lower ebb. The thrust of this paper therefore is to examine the impact of vegetation in solar control reducing thermal discomfort in housing thereby enhancing the energy performance of the buildings. Using secondary data, the paper identifies the benefits of vegetation in and around buildings to include improvement of indoor air quality through the aesthetics quality of the environment and concludes that vegetation in and around building will in no small measure contributes to saving energy consumption.


2018 ◽  
Vol 878 ◽  
pp. 173-178
Author(s):  
Chorpech Panraluk ◽  
Atch Sreshthaputra

The purpose of this study is to evaluate the Thermal comfort of the Thai elderly in air-conditioned space. The quantitative evaluation was conducted using 163 senior participants while recording their expressed satisfaction within the thermal environment in four public health service buildings in Phitsanulok Province, Thailand. It revealed that for the Thai elderly, the Predicted Mean Vote could not be used to identify the Thermal Sensation Vote. In addition, the results of this study indicated that personal factors, such as gender, age, and underlying disease correlating affect their Thermal Sensation Vote. Perhaps most significantly, a coincidental finding was that the thermal sensation of the Thai elderly was strongly dependent upon the condition of the occupant’s metabolic syndrome, which belonged to the Non-Communicable Disease group. This study assumed that in the elderly, the metabolic syndrome might have an effect on their metabolic rate (as one of the six factors of thermal comfort). In terms of the environmental factors, the on-site environmental data was collected via field works. It found that the air-conditioned spaces had mean radiant temperatures of 23.20-31.40 °C, this condition would make seniors feel comfortable if the thermal environment in the study areas were controlled: air temperature 23.00-27.80 °C, relative humidity 54.00-73.00% and air velocity 0.08-0.72 m/s. However, some elderly wanted to change this thermal environment to either cooler (10.68%) or warmer (4.85%). Therefore, it should be further study to find the proper thermal environment for covering the most of the seniors in Thailand.


1987 ◽  
Vol 1 (2) ◽  
pp. 74-77 ◽  
Author(s):  
S C Foo ◽  
WO Phoon

Two hundred and eighty-five Office workers were surveyed and the micro-climatic conditions in which they worked were measured to evaluate their preferred temperature. About 78% of workers considered the natural tropical climate uncomfortable. However, 76% to 87% of workers in airconditioned Offices approved of their thermal environment if its temperature ranged from 21°C to 27°C. Many workers who felt that the temperature produced a neutral thermal sensation in the body as a whole, tended to complain that their heads were too warm and at the same time their limbs too cool. About 60% of workers in airconditioned Offices were exposed to an air temperature of less than 24°C. Present data suggest that an air temperature of 27°C would be comfortable for more than 80% of workers.


2016 ◽  
Vol 34 (4/5) ◽  
pp. 427-445 ◽  
Author(s):  
Baharuddin Hamzah ◽  
Muhammad Taufik Ishak ◽  
Syarif Beddu ◽  
Mohammad Yoenus Osman

Purpose The purpose of this paper is to analyse thermal comfort and the thermal environment in naturally ventilated classrooms. Specifically, the aims of the study were to identify the thermal environment and thermal comfort of respondents in naturally ventilated university classrooms and compare them with the ASHRAE and Indonesian National Standard (SNI); to check on whether the predicted mean vote (PMV) model is applicable or not for predicting the thermal comfort of occupants in naturally ventilated university classrooms; and to analyse the neutral temperature of occupants in the naturally ventilated university classrooms. Design/methodology/approach The study was carried out at the new campus of Faculty of Engineering, Hasanuddin University, Gowa campus. A number of field surveys, which measured thermal environments, namely, air temperature, mean radiant temperature (MRT), relative humidity, and air velocity, were carried out. The personal activity and clothing properties were also recorded. At the same time, respondents were asked to fill a questionnaire to obtain their thermal sensation votes (TSV) and thermal comfort votes (TCV), thermal preference, and thermal acceptance. A total of 118 respondents participated in the study. Before the survey was conducted, a brief explanation was provided to the participants to ensure that they understood the study objectives and also how to fill in the questionnaires. Findings The results indicated that the surveyed classrooms had higher thermal environments than those specified in the well-known ASHRAE standard and Indonesian National Standard (SNI). However, this condition did not make respondents feel uncomfortable because a large proportion of respondents voted within the comfort zone (+1, 0, and −1). The predictive mean vote using the PMV model was higher than the respondents’ votes either by TSV or by TCV. There was a huge difference between neutral temperature using operative temperature (To) and air temperature (Ta). This difference may have been because of the small value of MRT recorded in the measured classrooms. Originality/value The research shows that the use of the PMV model in predicting thermal comfort in the tropic region might be misleading. This is because PMV mostly overestimates the TSV and TCV of the respondents. People in the tropic region are more tolerant to a higher temperature. On the basis of this finding, there is a need to develop a new thermal comfort model for university classrooms that is particularly optimal for this tropical area.


Sign in / Sign up

Export Citation Format

Share Document