chamber experiment
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 2069 (1) ◽  
pp. 012237
Author(s):  
Yu Dong ◽  
Yuan Shi ◽  
Yanfeng Liu ◽  
Jørn Toftum

Abstract Migration between different climate regions may change people’s thermal experience and their thermal adaptation. However, few studies have explored the thermal adaptation process and the suitable indoor thermal environment of migrants. In this study, we conducted a long-term tracking comparative experiment on thermal adaptation of migrants moving from severe cold (SC) regions, hot summer and cold winter (HSCW) regions, and hot summer and warm winter (HSWW) regions to cold region of China. A two-year climate chamber experiment was conducted to follow migrants’ progressive thermal adaptation, such as different weeks, months and seasons after they migrated. The results show that the thermal sensation of migrants was significantly associated with their origin, the time after migration and air temperature. In addition, with the increase time after migration, the thermal sensitivity of HSCW and SC migrants showed a significant upward and downward trend, respectively. Two years after migration, the thermal comfort limits of migrants from SC, HSWW and HSCW were almost identical at 23.5-27.8°C, 23.8-27.8°C, and 23.5-27.6°C. The results provides insight to the progression of thermal adaptation and helpful to guide the design of indoor climate for immigrants with different thermal experiences.


2021 ◽  
Vol 18 (19) ◽  
pp. 5363-5380
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotope composition of leaf-wax-derived biomarkers, e.g., long-chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimate. However, a direct reconstruction of the isotope composition of source water based on δ2Hn-alkane alone is challenging due to the enrichment of heavy isotopes during evaporation. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this limitation and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of Eucalyptus globulus, Vicia faba, and Brassica oleracea, which grew under controlled conditions. We addressed the questions of (i) whether δ2Hn-alkane and δ18Osugar values allow reconstructions of leaf water isotope composition, (ii) how accurately the reconstructed leaf water isotope composition enables relative humidity (RH) reconstruction, and (iii) whether the coupling of δ2Hn-alkane and δ18Osugar enables a robust source water calculation. For all investigated species, the n-alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. Regarding hemicellulose-derived monosaccharides, arabinose and xylose were most abundant, and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf water and δ18Oleaf water, respectively (r2=0.45 and 0.85, respectively; p<0.001, n=24). Mean fractionation factors between biomarkers and leaf water were found to be −156 ‰ (ranging from −133 ‰ to −192 ‰) for εn-alkane/leaf water and +27.3 ‰ (ranging from +23.0 ‰ to 32.3 ‰) for εsugar/leaf water, respectively. Modeled RHair values from a Craig–Gordon model using measured Tair, δ2Hleaf water and δ18Oleaf water as input correlate highly significantly with modeled RHair values (R2=0.84, p<0.001, RMSE = 6 %). When coupling δ2Hn-alkane and δ18Osugar values, the correlation of modeled RHair values with measured RHair values is weaker but still highly significant, with R2=0.54 (p<0.001, RMSE = 10 %). Finally, the reconstructed source water isotope composition (δ2Hs and δ18Os) as calculated from our coupled approach matches the source water in the climate chamber experiment (δ2Htank water and δ18Otank water). This highlights the great potential of the coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach for paleoclimate and relative humidity reconstructions.


Author(s):  
Lucas Martín Garino Libardi ◽  
Luciano Agustín Oldecop ◽  
Enrique Edgar Romero Morales ◽  
Roberto Lorenzo Rodriguez Pacheco

Author(s):  
Jun Hu ◽  
Guosheng Yang ◽  
Chutima Kranrod ◽  
Kazuki Iwaoka ◽  
Masahiro Hosoda ◽  
...  

An improved passive CR-39-based direct 222Rn/220Rn progeny detector with 3 detection channels was designed and tested in this study to measure and calculate equilibrium equivalent concentration (EEC) of both 222Rn and 220Rn without the equilibrium factor. A theoretical model was established to calculate the EEC with optimization. Subsequently, an exposure experiment was carried out to test the performance of this detector, and we compared the chamber experiment and the theoretical model by estimating and measuring various parameters. The deposition flux of progeny derived from the prediction agreed well with the value measured in the exposure chamber. The energy-weighted net track density (NTD) measured by this detector is much more reliable to reflect the linear relation between NTD and time-integrated EEC. Since the detector is sensitive to the exposure environmental condition, it is recommended to apply the detector to measure the EEC after its calibration in a typical indoor environment.


Sign in / Sign up

Export Citation Format

Share Document