Visualization of randomly ordered numeric data sets using spherical self-organizing feature maps

2003 ◽  
Vol 27 (6) ◽  
pp. 963-976 ◽  
Author(s):  
Archana Sangole ◽  
George K. Knopf
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yang ◽  
Ruey Long Cheu ◽  
Xiucheng Guo ◽  
Alicia Romo

A self-organizing feature map (SOM) was used to represent vehicle-following and to analyze the heterogeneities in vehicle-following behavior. The SOM was constructed in such a way that the prototype vectors represented vehicle-following stimuli (the follower’s velocity, relative velocity, and gap) while the output signals represented the response (the follower’s acceleration). Vehicle trajectories collected at a northbound segment of Interstate 80 Freeway at Emeryville, CA, were used to train the SOM. The trajectory information of two selected pairs of passenger cars was then fed into the trained SOM to identify similar stimuli experienced by the followers. The observed responses, when the stimuli were classified by the SOM into the same category, were compared to discover the interdriver heterogeneity. The acceleration profile of another passenger car was analyzed in the same fashion to observe the interdriver heterogeneity. The distribution of responses derived from data sets of car-following-car and car-following-truck, respectively, was compared to ascertain inter-vehicle-type heterogeneity.


1993 ◽  
Author(s):  
Steven A. Harp ◽  
Tariq Samad ◽  
Michael Villano

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


2005 ◽  
Vol 15 (01n02) ◽  
pp. 101-110 ◽  
Author(s):  
TIMO SIMILÄ ◽  
SAMPSA LAINE

Practical data analysis often encounters data sets with both relevant and useless variables. Supervised variable selection is the task of selecting the relevant variables based on some predefined criterion. We propose a robust method for this task. The user manually selects a set of target variables and trains a Self-Organizing Map with these data. This sets a criterion to variable selection and is an illustrative description of the user's problem, even for multivariate target data. The user also defines another set of variables that are potentially related to the problem. Our method returns a subset of these variables, which best corresponds to the description provided by the Self-Organizing Map and, thus, agrees with the user's understanding about the problem. The method is conceptually simple and, based on experiments, allows an accessible approach to supervised variable selection.


2019 ◽  
Vol 53 (1) ◽  
pp. 2-19 ◽  
Author(s):  
Erion Çano ◽  
Maurizio Morisio

Purpose The fabulous results of convolution neural networks in image-related tasks attracted attention of text mining, sentiment analysis and other text analysis researchers. It is, however, difficult to find enough data for feeding such networks, optimize their parameters, and make the right design choices when constructing network architectures. The purpose of this paper is to present the creation steps of two big data sets of song emotions. The authors also explore usage of convolution and max-pooling neural layers on song lyrics, product and movie review text data sets. Three variants of a simple and flexible neural network architecture are also compared. Design/methodology/approach The intention was to spot any important patterns that can serve as guidelines for parameter optimization of similar models. The authors also wanted to identify architecture design choices which lead to high performing sentiment analysis models. To this end, the authors conducted a series of experiments with neural architectures of various configurations. Findings The results indicate that parallel convolutions of filter lengths up to 3 are usually enough for capturing relevant text features. Also, max-pooling region size should be adapted to the length of text documents for producing the best feature maps. Originality/value Top results the authors got are obtained with feature maps of lengths 6–18. An improvement on future neural network models for sentiment analysis could be generating sentiment polarity prediction of documents using aggregation of predictions on smaller excerpt of the entire text.


2012 ◽  
Vol 7 (47) ◽  
pp. 6357-6362 ◽  
Author(s):  
Pilarski Krzysztof ◽  
Boniecki Piotr ◽  
Slosarz Piotr ◽  
Dach Jacek ◽  
Boniecka Piekarska Hanna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document