C2F-3DToothSeg: Coarse-to-fine 3D tooth segmentation via intuitive single clicks

Author(s):  
Xiaotong Jiang ◽  
Benlian Xu ◽  
Mingqiang Wei ◽  
Ke Wu ◽  
Siyuan Yang ◽  
...  
2017 ◽  
Vol 22 (5) ◽  
pp. 1433-1444 ◽  
Author(s):  
Huansheng Song ◽  
Xuan Wang ◽  
Cui Hua ◽  
Weixing Wang ◽  
Qi Guan ◽  
...  

IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Yunbo Rao ◽  
Yilin Wang ◽  
Fanman Meng ◽  
Jiansu Pu ◽  
Jihong Sun ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Eman Elkhateeb ◽  
Hassan Soliman ◽  
Ahmed Atwan ◽  
Mohammed Elmogy ◽  
Kyung-Sup Kwak ◽  
...  

Author(s):  
Yong Deng ◽  
Jimin Xiao ◽  
Steven Zhiying Zhou ◽  
Jiashi Feng

2021 ◽  
Vol 10 (8) ◽  
pp. 525
Author(s):  
Wenmin Yao ◽  
Tong Chu ◽  
Wenlong Tang ◽  
Jingyu Wang ◽  
Xin Cao ◽  
...  

As one of China′s most precious cultural relics, the excavation and protection of the Terracotta Warriors pose significant challenges to archaeologists. A fairly common situation in the excavation is that the Terracotta Warriors are mostly found in the form of fragments, and manual reassembly among numerous fragments is laborious and time-consuming. This work presents a fracture-surface-based reassembling method, which is composed of SiamesePointNet, principal component analysis (PCA), and deep closest point (DCP), and is named SPPD. Firstly, SiamesePointNet is proposed to determine whether a pair of point clouds of 3D Terracotta Warrior fragments can be reassembled. Then, a coarse-to-fine registration method based on PCA and DCP is proposed to register the two fragments into a reassembled one. The above two steps iterate until the termination condition is met. A series of experiments on real-world examples are conducted, and the results demonstrate that the proposed method performs better than the conventional reassembling methods. We hope this work can provide a valuable tool for the virtual restoration of three-dimension cultural heritage artifacts.


Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


Sign in / Sign up

Export Citation Format

Share Document