scholarly journals Preserving convexity through rational cubic spline fractal interpolation function

2014 ◽  
Vol 263 ◽  
pp. 262-276 ◽  
Author(s):  
P. Viswanathan ◽  
A.K.B. Chand ◽  
R.P. Agarwal
Fractals ◽  
2003 ◽  
Vol 11 (01) ◽  
pp. 1-7 ◽  
Author(s):  
M. ANTONIA NAVASCUÉS ◽  
M. VICTORIA SEBASTIÁN

Fractal interpolation functions (FIFs) provide new methods of approximation of experimental data. In the present paper, a fractal technique generalizing cubic spline functions is proposed. A FIF f is defined as the fixed point of a map between spaces of functions. The properties of this correspondence allow to deduce some inequalities that express the sensitivity of these functions and their derivatives to those changes in the parameters defining them. Under some hypotheses on the original function, bounds of the interpolation error for f, f′ and f′′ are obtained. As a consequence, the uniform convergence to the original function and its derivative as the interpolation step tends to zero is proved. According to these results, it is possible to approximate, with arbitrary accuracy, a smooth function and its derivatives by using a cubic spline fractal interpolation function (SFIF).


Fractals ◽  
2014 ◽  
Vol 22 (01n02) ◽  
pp. 1450005 ◽  
Author(s):  
G. P. KAPOOR ◽  
SRIJANANI ANURAG PRASAD

In the present work, the notion of Cubic Spline Super Fractal Interpolation Function (SFIF) is introduced to simulate an object that depicts one structure embedded into another and its approximation properties are investigated. It is shown that, for an equidistant partition points of [x0, xN], the interpolating Cubic Spline SFIF[Formula: see text] and their derivatives [Formula: see text] converge respectively to the data generating function y(x) ≡ y(0)(x) and its derivatives y(j)(x) at the rate of h2-j+ϵ(0 < ϵ < 1), j = 0, 1, 2, as the norm h of the partition of [x0, xN] approaches zero. The convergence results for Cubic Spline SFIF found here show that any desired accuracy can be achieved in the approximation of a regular data generating function and its derivatives by a Cubic Spline SFIF and its corresponding derivatives.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 767
Author(s):  
Alexandra Băicoianu ◽  
Cristina Maria Păcurar ◽  
Marius Păun

The present paper concretizes the models proposed by S. Ri and N. Secelean. S. Ri proposed the construction of the fractal interpolation function(FIF) considering finite systems consisting of Rakotch contractions, but produced no concretization of the model. N. Secelean considered countable systems of Banach contractions to produce the fractal interpolation function. Based on the abovementioned results, in this paper, we propose two different algorithms to produce the fractal interpolation functions both in the affine and non-affine cases. The theoretical context we were working in suppose a countable set of starting points and a countable system of Rakotch contractions. Due to the computational restrictions, the algorithms constructed in the applications have the weakness that they use a finite set of starting points and a finite system of Rakotch contractions. In this respect, the attractor obtained is a two-step approximation. The large number of points used in the computations and the graphical results lead us to the conclusion that the attractor obtained is a good approximation of the fractal interpolation function in both cases, affine and non-affine FIFs. In this way, we also provide a concretization of the scheme presented by C.M. Păcurar .


2021 ◽  
Author(s):  
Easwaramoorthy D. ◽  
Gowrisankar A. ◽  
Manimaran A. ◽  
Nandhini S. ◽  
Santo Banerjee ◽  
...  

Abstract The coronavirus disease 2019 (COVID-19) pandemic has fatalized 216 countries across the world and has claimed the lives of millions of people globally. Researches are being carried out worldwide by scientists to understand the nature of this catastrophic virus and find a potential vaccine for it. The most possible efforts have been taken to present this paper as a form of contribution to the understanding of this lethal virus in the first and second wave. This paper presents a unique technique for the methodical comparison of disastrous virus dissemination in two waves amid five most infested countries and the death rate of the virus in order to attain a clear view on the behaviour of the spread of the disease. For this study, the dataset of the number of deaths per day and the number of infected cases per day of the most affected countries, The United States of America, Brazil, Russia, India, and The United Kingdom have been considered in first and second wave. The correlation fractal dimension has been estimated for the prescribed datasets of COVID-19 and the rate of death has been compared based on the correlation fractal dimension estimate curve. The statistical tool, analysis of variance has also been used to support the performance of the proposed method. Further, the prediction of the daily death rate has been demonstrated through the autoregressive moving average model. In addition, this study also emphasis a feasible reconstruction of the death rate based on the fractal interpolation function. Subsequently, the normal probability plot is portrayed for the original data and the predicted data, derived through the fractal interpolation function to estimate the accuracy of the prediction. Finally, this paper neatly summarized with the comparison and prediction of epidemic curve of the first and second waves of COVID-19 pandemic to picturize the transmission rate in the both times.


Fractals ◽  
2005 ◽  
Vol 13 (01) ◽  
pp. 33-41 ◽  
Author(s):  
ZHIGANG FENG ◽  
LIXIN TIAN ◽  
JIANLI JIAO

Fractal interpolation function (FIF) is continuous on its interval of definition. As a special kind of continuous function, FIFs' integrations on various scales and Fourier transform are studied in this paper. All of them can be expressed by the parameters of the corresponding iterative function systems.


Sign in / Sign up

Export Citation Format

Share Document