Can the incident photo-to-electron conversion efficiency be used to calculate short-circuit current density of dye-sensitized solar cells

2012 ◽  
Vol 12 ◽  
pp. e54-e58 ◽  
Author(s):  
Xiao-Zhi Guo ◽  
Yan-Hong Luo ◽  
Chun-Hui Li ◽  
Da Qin ◽  
Dong-Mei Li ◽  
...  
2007 ◽  
Vol 31 ◽  
pp. 176-178
Author(s):  
Hyeon Seok Lee ◽  
Heon Yong Lee ◽  
S.Y. Ahn ◽  
K.H. Kim ◽  
J.Y. Kwon

We fabricated improved carbon counter electrodes to improve conversion efficiency of dye sensitized solar cells (DSSCs). Unlike conventional carbon counter electrodes, we added small quantity of TiO2 nano powder and used chemical sintering methodology developed by Park’s group to make surface morphology of the electrodes to change. Through these methods, we could observe change of surface morphology of carbon electrodes and influences on short circuit current density (JSC) and conversion efficiency.


RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42252-42259 ◽  
Author(s):  
Shengbo Zhu ◽  
Zhongwei An ◽  
Xinbing Chen ◽  
Pei Chen ◽  
Qianfeng Liu

The modification of the π-linker of cyclic thiourea functionalized dyes has a significant effect on the short-circuit current density and open-circuit voltage of dye-sensitized solar cells.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Lung-Chien Chen ◽  
Cheng-Chiang Chen ◽  
Bo-Shiang Tseng

The effect of a nanocolumnar TiO2compact layer in dye-sensitized solar cells (DSSCs) was examined. Such a compact layer was sputtered on a glass substrate with an indium tin oxide (ITO) film using TiO2powder as the raw material, with a thickness of ~100 nm. The compact layer improved the short-circuit current density and the efficiency of conversion of solar energy to electricity by the DSSC by 53.37% and 59.34%, yielding values of 27.33 mA/cm2and 9.21%, respectively. The performance was attributed to the effective electron pathways in the TiO2compact layer, which reduced the back reaction by preventing direct contact between the redox electrolyte and the conductive substrate.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2020 ◽  
Vol 1 (8) ◽  
pp. 2964-2970
Author(s):  
Venkatesan Srinivasan ◽  
Jagadeeswari Sivanadanam ◽  
Kothandaraman Ramanujam ◽  
Mariadoss Asha Jhonsi

The inclusion of CNMs together with TiO2 enhanced the short circuit current density by 31% and power conversion efficiency (PCE) by 46% compared to the CNM-free DSSCs.


2011 ◽  
Vol 378-379 ◽  
pp. 636-641
Author(s):  
Cheng Chiang Chen ◽  
Lung Chien Chen ◽  
Shu Jung Kuo

This study examined the nanostructure InN compact layer and Au nano particles to dye-sensitized solar cells (DSSCs).We presents the DSSCs with Nitrided indium compact layer (InN-CPL) prepared by radiofrequency magnetron sputtering and doping Au particle in photoelectrode. The InN-CPL effectively reduces the back reaction in the interface between the indium tin oxide (ITO) transparent conductive film and the electrolyte in the DSSC. The Au particles effect conduction band of the TiO2 to rise open-circuit voltage to 0.7 v. The Au particles effectively rise inject electrons efficiency. For the DSSC without InN-CPL, the short-circuit current density and solar energy conversion efficiency are 15.6 mA/cm2 and 6.35 %, respectively. However, DSSCs with InN-CPL effectively rise short-circuit current density. The DSSC fabricated on 90 nm InN-CPL and doping Au particle showed the maximum power conversion efficiency of 8.9 % (AM1.5G) due to effective prevention of the electron transfer to electrolyte.


2018 ◽  
Vol 6 (45) ◽  
pp. 22508-22512 ◽  
Author(s):  
Naohiko Kato ◽  
Shinya Moribe ◽  
Masahito Shiozawa ◽  
Ryo Suzuki ◽  
Kazuo Higuchi ◽  
...  

To realize highly efficient solid-state dye-sensitized solar cells (SDSCs), the absorption range of the dye should be extended to the near-IR range to increase short-circuit current density (Jsc); a high Jsc in turn requires a highly conductive p-type semiconductor.


Sign in / Sign up

Export Citation Format

Share Document