scholarly journals Improved conversion efficiency of 10% for solid-state dye-sensitized solar cells utilizing P-type semiconducting CuI and multi-dye consisting of novel porphyrin dimer and organic dyes

2018 ◽  
Vol 6 (45) ◽  
pp. 22508-22512 ◽  
Author(s):  
Naohiko Kato ◽  
Shinya Moribe ◽  
Masahito Shiozawa ◽  
Ryo Suzuki ◽  
Kazuo Higuchi ◽  
...  

To realize highly efficient solid-state dye-sensitized solar cells (SDSCs), the absorption range of the dye should be extended to the near-IR range to increase short-circuit current density (Jsc); a high Jsc in turn requires a highly conductive p-type semiconductor.

2007 ◽  
Vol 31 ◽  
pp. 176-178
Author(s):  
Hyeon Seok Lee ◽  
Heon Yong Lee ◽  
S.Y. Ahn ◽  
K.H. Kim ◽  
J.Y. Kwon

We fabricated improved carbon counter electrodes to improve conversion efficiency of dye sensitized solar cells (DSSCs). Unlike conventional carbon counter electrodes, we added small quantity of TiO2 nano powder and used chemical sintering methodology developed by Park’s group to make surface morphology of the electrodes to change. Through these methods, we could observe change of surface morphology of carbon electrodes and influences on short circuit current density (JSC) and conversion efficiency.


2021 ◽  
Vol 15 (1) ◽  
pp. 58
Author(s):  
Najihah M.Z. ◽  
Winie Tan

Current work employs dye extracted from leaves of Costus woodsonii as a new sensitizer for dye-sensitized solar cells (DSSCs). The leave was extracted in three different solvents namely ethanol, methanol, and acetone. Extraction of leaves was carried out by the freezing method. DSSCs with the configuration of TiO2/dye/electrolyte/Pt were assembled. The dyes in DSSCs were Costus woodsonii leaves extracted in methanol, ethanol, and acetone. DSSC with methanol extract of leaves has an efficiency of 0.23 % and short-circuit current density (Jsc) of 0.63 mA cm-2.  DSSC sensitized with ethanol extract of leaves has an efficiency of 0.37 % and Jsc of 0.85 mA cm-2. DSSC sensitized with acetone extract of leaves shows the highest efficiency of 0.48 % and Jsc of 1.35 mA cm-2. The performance of the DSSCs in this work is compared with other natural dye-based DSSCs. The efficiency obtained in this work is better or at par with the works reported by other researchers. Keywords: Natural dye; Costus woodsonii; Leave; Dye-sensitized solar cells


RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42252-42259 ◽  
Author(s):  
Shengbo Zhu ◽  
Zhongwei An ◽  
Xinbing Chen ◽  
Pei Chen ◽  
Qianfeng Liu

The modification of the π-linker of cyclic thiourea functionalized dyes has a significant effect on the short-circuit current density and open-circuit voltage of dye-sensitized solar cells.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1528 ◽  
Author(s):  
Guglielmo Risi ◽  
Mariia Becker ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

The syntheses of 4,4′-bis(4-dimethylaminophenyl)-6,6′-dimethyl-2,2′-bipyridine (1), 4,4′-bis(4-dimethylaminophenylethynyl)-6,6′-dimethyl-2,2′-bipyridine (2), 4,4′-bis(4-diphenylaminophenyl)-6,6′-dimethyl-2,2′-bipyridine (3), and 4,4′-bis(4-diphenylaminophenylethynyl)-6,6′-dimethyl-2,2′-bipyridine (4) are reported along with the preparations and characterisations of their homoleptic copper(I) complexes [CuL2][PF6] (L = 1–4). The solution absorption spectra of the complexes exhibit ligand-centred absorptions in addition to absorptions in the visible region assigned to a combination of intra-ligand and metal-to-ligand charge-transfer. Heteroleptic [Cu(5)(Lancillary)]+ dyes in which 5 is the anchoring ligand ((6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl)bis(4,1-phenylene))bis(phosphonic acid) and Lancillary = 1–4 have been assembled on fluorine-doped tin oxide (FTO)-TiO2 electrodes in dye-sensitized solar cells (DSCs). Performance parameters and external quantum efficiency (EQE) spectra of the DSCs (four fully-masked cells for each dye) reveal that the best performing dyes are [Cu(5)(1)]+ and [Cu(5)(3)]+. The alkynyl spacers are not beneficial, leading to a decrease in the short-circuit current density (JSC), confirmed by lower values of EQEmax. Addition of a co-absorbent (n-decylphosphonic acid) to [Cu(5)(1)]+ lead to no significant enhancement of performance for DSCs sensitized with [Cu(5)(1)]+. Electrochemical impedance spectroscopy (EIS) has been used to investigate the interfaces in DSCs; the analysis shows that more favourable electron injection into TiO2 is observed for sensitizers without the alkynyl spacer and confirms higher JSC values for [Cu(5)(1)]+.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
D. M. B. P. Ariyasinghe ◽  
H. M. N. Bandara ◽  
R. M. G. Rajapakse ◽  
K. Murakami ◽  
M. Shimomura

The surface modification of a TiO2electrode with diethyldithiocarbamate (DEDTC) in dye-sensitized solar cells (DSSCs) was studied. Results from X-ray photoelectron spectroscopy (XPS) indicate that over half of the sulfur atoms become positively charged after the DEDTC treatment of the TiO2surface. DSSCs were fabricated with TiO2electrodes modified by adsorbing DEDTC using a simple dip-coating process. The conversion efficiency of the DSSCs has been optimized to 6.6% through the enhancement of the short-circuit current density ( mA/cm2). This is substantially higher compared to the efficiency of 5.9% ( mA/cm2) for the DSSCs made with untreated TiO2electrodes.


Sign in / Sign up

Export Citation Format

Share Document