Electron transport layer engineering with rubidium chloride alkali halide to boost the performance of perovskite absorber layer

Author(s):  
Haider G. Abdulzahraa ◽  
Mustafa K.A. Mohammed
2020 ◽  
Vol 1 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Meiying Zhang ◽  
Fengmin Wu ◽  
Dan Chi ◽  
Keli Shi ◽  
Shihua Huang

Hybrid organic–inorganic perovskites have attracted intensive attention as the absorber layer in high-performance perovskite solar cells (PSCs).


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7200
Author(s):  
M. Mottakin ◽  
K. Sobayel ◽  
Dilip Sarkar ◽  
Hend Alkhammash ◽  
Sami Alharthi ◽  
...  

An ideal n-i-p perovskite solar cell employing a Pb free CH3NH3SnI3 absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH3NH3SnI3 absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in Voc, PCE decreases with temperature. Defect tolerance limit for IL1 is 1013 cm−3, 1016 cm−3 and 1012 cm−3 for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 1014 cm−3. With the proposed device structure FTO/PCBM/CH3NH3SnI3/CuO shows the maximum efficiency of 25.45% (Voc = 0.97 V, Jsc = 35.19 mA/cm2, FF = 74.38%), for the structure FTO/TiO2/CH3NH3SnI3/CuO the best PCE is obtained 26.92% (Voc = 0.99 V, Jsc = 36.81 mA/cm2, FF = 73.80%) and device structure of FTO/WO3/CH3NH3SnI3/CuO gives the maximum efficiency 24.57% (Voc = 0.90 V, Jsc = 36.73 mA/cm2, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO2/CH3NH3SnI3/CuO system provides better performance and better defect tolerance capacity.


Author(s):  
U.C. Obi ◽  
D.M. Sanni ◽  
A. Bello

Theoretical study of methyl-ammonium bismuth halide perovskite solar cells, (CH3NH3)3Bi2I9, was carried out using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The performance of the tested device architectures largely depends on the thickness of the absorbing layer, with the combination of electron transport, and hole transport layers. Thus, the bismuth perovskite absorber layer was optimized by varying the thickness and also, the thicknesses of the different charge-transport materials such as Spiro-OmeTAD, copper (I) oxide (Cu2O), and copper (I) iodide (CuI) as hole transport layer (HTL), and phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene-2,5-diyl) (P3HT), zinc oxide, and titanium dioxide as electron transport layer (ETL). The best performance in terms of the power conversion efficiency (PCE) was recorded for the device with Cu2O as the HTL and ZnO as the ETL with the absorber layer thickness of 200 nm. The working temperature of the device was varied from 295 to 320 K and the effects of temperature on various device architectures were investigated. Results obtained indication that the efficiency of the bismuth perovskite solar cells can be improved by optimizing the thickness of the absorber layer and utilizing an appropriate combination of HTLs and ETLs. Keywords: methyl-ammonium bismuth perovskite, SCAPS, HTL, ETL, PCE.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Atowar Rahman

AbstractThis article presents numerical investigations of the novel (Ni/SnS/Cu2SnSe3/TiO2/ITO/Al) heterostructure of Cu2SnSe3 based solar cell using SCAPS-1D simulator. Purpose of this research is to explore the influence of SnS hole transport layer (HTL) and TiO2 electron transport layer (ETL) on the performance of the proposed cell. Based on the proposed device architecture, effects of thickness and carrier concentration of absorber layer, SnS HTL, TiO2 ETL, absorber layer defect density, operating temperature and back-contact metal work function (BMWF) are studied to improve the cell performance. Our initial simulation results show that if SnS HTL is not introduced, the efficiency of standard Cu2SnSe3 cell is 1.66%, which is well agreed with the reported experimental results in literature. However, by using SnS and TiO2 as HTL and ETL, respectively and optimizing the cell parameters, a simulated efficiency of up to 27% can be achieved. For Cu2SnSe3 absorber layer, 5 × 1017 cm−3 and 1500 nm are the optimal values of carrier concentration and thickness, respectively. On the other hand, the BMWF is estimated to be greater than 5.2 eV for optimum cell performance. Results of this contribution can provide constructive research avenues for thin-films photovoltaic industry to fabricate cost-effective, high-efficiency and cadmium-free Cu2SnSe3-based solar cells.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


Author(s):  
Zafar Arshad ◽  
Asif Hussain Khoja ◽  
Sehar Shakir ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document