Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity

Carbon ◽  
2010 ◽  
Vol 48 (7) ◽  
pp. 2057-2062 ◽  
Author(s):  
Qing-Ping Feng ◽  
Jiao-Ping Yang ◽  
Shao-Yun Fu ◽  
Yiu-Wing Mai
Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7782-7791 ◽  
Author(s):  
Yanhu Zhan ◽  
Emanuele Lago ◽  
Chiara Santillo ◽  
Antonio Esaú Del Río Castillo ◽  
Shuai Hao ◽  
...  

A carbon nanotube/boron nitride/rubber composite with anisotropic electrical conductivity exhibits an EMI shielding effectiveness of 22.41 dB mm−1 and a thermal conductivity equal to 0.25 W m−1 K−1.


2001 ◽  
Vol 706 ◽  
Author(s):  
Cheol Park ◽  
Zoubeida Ounaies ◽  
Kent A. Watson ◽  
Kristin Pawlowski ◽  
Sharon E. Lowther ◽  
...  

AbstractPolymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10-8 S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.


Langmuir ◽  
2007 ◽  
Vol 23 (10) ◽  
pp. 5707-5712 ◽  
Author(s):  
Ronald H. Schmidt ◽  
Ian A. Kinloch ◽  
Andrew N. Burgess ◽  
Alan H. Windle

2015 ◽  
Vol 15 (4) ◽  
pp. 3265-3270 ◽  
Author(s):  
Yajuan Xing ◽  
Wei Cao ◽  
Wei Li ◽  
Hongyuan Chen ◽  
Wang Miao ◽  
...  

2008 ◽  
Vol 8 (9) ◽  
pp. 4860-4863 ◽  
Author(s):  
Soon Man Hong ◽  
Seung Sang Hwang

Poly(vinylidene fluoride)(PVDF)/Multi-walled carbon nanotube (MWNT) composites were melt blended using internal mixer. The relationships between structures and physical properties of thin PVDF/MWNT composite films were studied. With increasing the content of MWNT, the size of spherulites in PVDF decreased. MWNT was used as a nucleating agent. The incorporation of MWNT produced a polar β-form crystal structure of PVDF. The permittivities of thin PVDF/MWNT composite films were increased with increasing the MWNT content. The percolation level in electrical conductivity occurred between 2 and 2.5 wt%. The critical conductivity saturation point for the electrical conductivity in PVDF was confirmed. Similar tendency was also observed in thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document