Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship between microstructure and mechanical properties

Carbon ◽  
2015 ◽  
Vol 91 ◽  
pp. 346-357 ◽  
Author(s):  
Huixing Zhang ◽  
Eddie López-Honorato ◽  
Ping Xiao
2009 ◽  
Vol 44 (22) ◽  
pp. 6125-6134 ◽  
Author(s):  
Gustavo Sánchez ◽  
B. Abdallah ◽  
P. Tristant ◽  
C. Dublanche-Tixier ◽  
M. A. Djouadi ◽  
...  

2008 ◽  
Vol 23 (6) ◽  
pp. 1785-1796 ◽  
Author(s):  
E. López-Honorato ◽  
P.J. Meadows ◽  
J. Tan ◽  
P. Xiao

Stoichiometric silicon carbide coatings the same as those used in the formation of TRISO (TRistructural ISOtropic) fuel particles were produced by the decomposition of methyltrichlorosilane in hydrogen. Fluidized bed chemical vapor deposition at around 1500 °C, produced SiC with a Young’s modulus of 362 to 399 GPa. In this paper we demonstrate the deposition of stoichiometric silicon carbide coatings with refined microstructure (grain size between 0.4 and 0.8 μm) and enhanced mechanical properties (Young’s modulus of 448 GPa and hardness of 42 GPa) at 1300 °C by the addition of propene. The addition of ethyne, however, had little effect on the deposition of silicon carbide. The effect of deposition temperature and precursor concentration were correlated to changes in the type of molecules participating in the deposition mechanism.


2016 ◽  
Vol 697 ◽  
pp. 846-851 ◽  
Author(s):  
Ma Lin Liu ◽  
Rong Zheng Liu ◽  
Jia Xing Chang ◽  
You Lin Shao

Tristructural-isotropic (TRISO) particle, with spherical ceramic fuel particle kernels followed by three layers of pyrolytic carbon and one layer of silicon carbide (SiC), has been successful now in high temperature gas cooled reactor (HTGR). The silicon carbide (SiC) layer used in TRISO coated fuel particles is normally produced at high temperatures (~1600°C) via fluidized bed chemical vapor deposition from methyltrichlorosilane (MTS) in a hydrogen environment. The precursor is strong corrosive and the process is not environmentally friendly. In this work, hexamethyldisilane (HMDS) was used instead of MTS and the deposition behavior was investigated via fluidized bed chemical vapor deposition method. Different experimental parameters were tested, such as deposition temperature (800~1450°C) and gas flow ratio of Ar: H2. The deposition rates were obtained and compared. It was found that the optimization parameters of highest deposition rate is 1000°C with the ratio of Ar: H2 of 1:1. The microstructures of the products were further investigated by SEM, XRD and Raman scattering. From the X-ray diffraction pattern it could be inferred that the β-SiC phase was obtained, and free carbon was also found in deposition products. Different types of SiC layer, including dense and porous layer can be prepared. The experimental results validated that HMDS was an alternative precursor for preparing the SiC layer in producing the TRISO particle and other SiC-coated materials in lower temperatures


Sign in / Sign up

Export Citation Format

Share Document