Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability

Carbon ◽  
2021 ◽  
Vol 175 ◽  
pp. 377-386
Author(s):  
Zhizhuang Liu ◽  
Yilun Cai ◽  
Rong Tu ◽  
Qingfang Xu ◽  
Mingwei Hu ◽  
...  
1989 ◽  
Vol 158 ◽  
Author(s):  
R. Scarmozzino ◽  
T. Cacouris ◽  
R.M. Osgood

ABSTRACTIn situ measurement of resistance has been used for the realtime monitoring of metallorganic chemical vapor deposition (CVD) growth characteristics. In particular, a novel technique for measuring metallorganic CVD activation energies is presented. The micron scale geometry of the experiment makes it relevant to work in localized laser CVD. The technique has been used to measure the CVD activation energy of dimethylaluminum hydride (DMAlH). In addition, a variant of the technique has been used to study the growth stage of a resistless two-step metallization process (nucleation / selective CVD) employing DMAIH as the source gas in both steps.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051007
Author(s):  
Jie Dong ◽  
Qinghao Yang ◽  
Qiuli Zhao ◽  
Zhenzhong Hou ◽  
Yue Zhou ◽  
...  

Electrode materials with a high specific capacitance, outstanding reversibility and excellent cycle stability are constantly pursued for supercapacitors. In this paper, we present an approach to improve the electrochemical performance by combining the advantages of both inorganic and organic. Ni-MnO2/PANi-co-PPy composites are synthesized, with the copolymer of aniline/pyrrole being coated on the surface of Ni-doped manganese dioxide nanospheres. The inorganic–organic composite enables a substantial increase in its specific capacitance and cycle stability. When the mass ratio of Ni-MnO2 to aniline and pyrrole mixed monomer is 1:5, the composite delivers high specific capacitance of 445.49[Formula: see text]F/g at a scan rate of 2[Formula: see text]mV/s and excellent cycle stability of 61.65% retention after 5000 cycles. The results indicate that the Ni-MnO2/PANi-co-PPy composites are promising electrode materials for future supercapacitors application.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 783
Author(s):  
Ying Duan ◽  
Chen Wang ◽  
Jian Hao ◽  
Yang Jiao ◽  
Yanchao Xu ◽  
...  

In this paper, we propose for the first time the synthesis of α-MoO3 nanorods in a one-step procedure at mild temperatures. By changing the growth parameters, the microstructure and controllable morphology of the resulting products can be customized. The average diameter of the as-prepared nanorods is about 200 nm. The electrochromic and capacitance properties of the synthesized products were studied. The results show that the electrochromic properties of α-MoO3 nanorods at 550 nm have 67% high transmission contrast, good cycle stability and fast response time. The MoO3 nanorods also exhibit a stable supercapacitor performance with 98.5% capacitance retention after 10,000 cycles. Although current density varies sequentially, the nanostructure always exhibits a stable capacitor to maintain 100%. These results indicate the as-prepared MoO3 nanorods may be good candidates for applications in electrochromic devices and supercapacitors.


2021 ◽  
Vol 6 (3) ◽  
pp. 949-958
Author(s):  
Dandan Yu ◽  
Qiaonan Zhu ◽  
Liwei Cheng ◽  
Shuai Dong ◽  
Xiuhui Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (5) ◽  
pp. 2948-2958
Author(s):  
Bing Wang ◽  
Shuo Liu ◽  
Lin Liu ◽  
Wen-Wei Song ◽  
Yue Zhang ◽  
...  

The three-component PCN-224/PEDOT/PMo12 supercapacitor electrode material is designed to offer high area capacitance, good cycle stability and mechanical flexibility.


Author(s):  
Lisan Cui ◽  
Chunlei Tan ◽  
Yu Li ◽  
Qichang Pan ◽  
Lixuan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document