Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films

2017 ◽  
Vol 157 ◽  
pp. 512-520 ◽  
Author(s):  
Milena Martelli-Tosi ◽  
Odílio B.G. Assis ◽  
Natália C. Silva ◽  
Bruno S. Esposto ◽  
Maria Alice Martins ◽  
...  
2019 ◽  
Vol 10 (8) ◽  
pp. 4761-4770 ◽  
Author(s):  
Qianwen Ye ◽  
Xiaoping Wu ◽  
Xinyuan Zhang ◽  
Shaoyun Wang

The preparation and characterization of a soybean protein isolate peptide-Se chelate with remarkably antioxidant activity in vitro and in vivo.


2019 ◽  
Vol 97 ◽  
pp. 105191 ◽  
Author(s):  
Mengqi Zhang ◽  
Junhua Li ◽  
Yujie Su ◽  
Cuihua Chang ◽  
Xin Li ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 1525-1528
Author(s):  
Chao Zhang ◽  
Xiao Fei Guo ◽  
Yue Ma ◽  
Xiao Yan Zhao

The effect of the drying temperature on the secondary structure of the soybean protein-isolate/carboxymethyl cellulose/stearic acid composite films was evaluated. The Fourier transform-infrared spectra showed that the stearic acid lose some characteristic absorptions. Hence, the stearic acid was well integrated with the other ingredients. The absorption band (1600~1700 cm-1) of the composite film was deconvoluted into 9 peaks for the calculation of their secondary structure. The β-sheet content of the composite films dried at 90 oC was significant higher than that of the control. Hence, the composite films dried at 90 oC was more stable than the control.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2813
Author(s):  
Le Ao ◽  
Panhang Liu ◽  
Annan Wu ◽  
Jing Zhao ◽  
Xiaosong Hu

(1) Background: Protein–polyphenol interactions have been widely studied regarding their influence on the properties of both protein and the ligands. As an important protein material in the food industry, soybean protein isolate (SPI) experiences interesting changes through polyphenols binding. (2) Methods: In this study, a molecular docking and virtual screening method was established to evaluate the SPI–polyphenol interaction. A compound library composed of 33 commonly found food source polyphenols was used in virtual screening. The binding capacity of top-ranking polyphenols (rutin, procyanidin, cyanidin chloride, quercetin) was validated and compared by fluorescence assays. (3) Results: Four out of five top-ranking polyphenols in virtual screening were flavonoids, while phenolic acids exhibit low binding capacity. Hydrogen bonding and hydrophobic interactions were found to be dominant interactions involved in soybean protein–polyphenol binding. Cyanidin chloride exhibited the highest apparent binding constant (Ka), which was followed by quercetin, procyanidin, and rutin. Unlike others, procyanidin addition perturbed a red shift of SPI fluorescence, indicating a slight conformational change of SPI. (4) Conclusions: These results suggest that the pattern of SPI–polyphenol interaction is highly dependent on the detailed structure of polyphenols, which have important implications in uncovering the binding mechanism of SPI–polyphenol interaction.


2014 ◽  
Vol 716-717 ◽  
pp. 28-31
Author(s):  
Chao Zhang ◽  
Xiao Fei Guo ◽  
Yue Ma ◽  
Xiao Yan Zhao

The effect of FA and OFA on performances of the soybean protein-isolate/chitosan composite films was evaluated. The FA and OFA enhanced the tensile strength and thermal stability of the composite films significantly, while they reduced the water vapor permeability to 60.3 % and 72.8 % of the control respectively. Moreover, the OFA was more effective to enhance the tensile strength of the composite films than the FA.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1547-1550
Author(s):  
Chao Zhang ◽  
Xiao Fei Guo ◽  
Yue Ma ◽  
Xiao Yan Zhao

The thermalgravimetric and differential scanning calorimetry analysis were used to evaluated the state of stearic acid in the soybean protein-isolate/carboxymethyl cellulose composite films. The stearic acid lose its weight rapidly in 210~280 oC, while no significant weight loss presented among 210~280 oC in the profiles of the control and the composite films dried at 90 oC. Hence, the stearic acid was well interacted with the other ingredients. Moreover, the stearic acid was distributed as the free state and bound state in the composite films. The free stearic acid ratio of the composite films dried at 90 oC was the lowest among the tested films. The temperature of 90 oC effectively enhanced the interaction of the SA with the other ingredients.


2010 ◽  
Vol 658 ◽  
pp. 125-128 ◽  
Author(s):  
Yan Lu ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Pan He

A soybean protein isolate (SPI) main chain grafted with methyl acrylate (MA) and methyl methacrylate (MMA) as a new thermoplastic copolymer (T-SPI) was prepared. The properties of the material were evaluated with DSC, FT-IR, and rotary rheometry. The results indicated that the monomer was grafted on SPI successfully. The T-SPI had a glass transition at about 66°C. T-SPI was a typical viscoelastic material, and its elastic ratio was 65.27%, the shear viscosity was very sensitive to temperature and the flowability of T-SPI was regulated by temperature.


2014 ◽  
Vol 716-717 ◽  
pp. 24-27 ◽  
Author(s):  
Chao Zhang ◽  
Xiao Fei Guo ◽  
Yue Ma ◽  
Xiao Yan Zhao

The effect of ferulic acid (FA) and oxidized ferulic acid (OFA) on performances of the soybean protein-isolate/chitosan composite films was evaluated. The FA and OFA showed an excellent compatibility and miscibility of in the composite films, and leaded the surface more compact and smooth. The FA and OFA also enhanced the thermal stability of the composite films. The FA and OFA enhanced the performance of the composite films by raising the band energy of the crosslinked molecules.


Sign in / Sign up

Export Citation Format

Share Document