simulated digestion
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 139)

H-INDEX

25
(FIVE YEARS 7)

2022 ◽  
Vol 372 ◽  
pp. 131294
Author(s):  
Gayathri Jagadeesan ◽  
Kasipandi Muniyandi ◽  
Ashwini Lydia Manoharan ◽  
Gayathri Nataraj ◽  
Parimelazhagan Thangaraj

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 415
Author(s):  
Stylianos Floros ◽  
Alexandros Toskas ◽  
Evagelia Pasidi ◽  
Patroklos Vareltzis

Modern dietary habits have created the need for the design and production of functional foods enriched in bioactive compounds for a healthy lifestyle. However, the fate of many of these bioactive compounds in the human gastrointestinal (GI) tract has not been thoroughly investigated. Thus, in the present study, the bioaccessibility of omega-3 fatty acids was examined. To that end, different foods and supplements underwent simulated digestion following the INFOGEST protocol. The selected samples were foods rich in omega-3 fatty acids both in free and bound form—i.e., dietary fish oil supplements, heat-treated fish, and eggs enriched with omega-3 fatty acids. The oxidation of polyunsaturated fatty acids (PUFAs) was measured at each stage of the digestion process using peroxide value (PV) and TBARS and by quantifying individual omega-3 fatty acids using a gas chromatograph with flame ionization detector (GC-FID). The final bioaccessibility values of omega-3 fatty acids were determined. Changes in the quantity of mono-saturated fatty acids (MUFAs) and saturated fatty acids (SFAs) were recorded as well. The results indicated a profound oxidation of omega-3 fatty acids, giving rise to both primary and secondary oxidation products. Additionally, stomach conditions seemed to exert the most significant effect on the oxidation of PUFAs during digestion, significantly decreasing their bioaccessibility. The oxidation rate of each fatty acid was found to be strongly correlated with its initial concentration. Finally, the oxidation pattern was found to be different for each matrix and emulsified lipids seemed to be better protected than non-emulsified lipids. It is concluded that digestion has a profound negative effect on omega-3 bioaccessibility and therefore there is a need for improved protective mechanisms.


2022 ◽  
pp. 107487
Author(s):  
Linyuan Liu ◽  
Duoduo Zhang ◽  
Xiaoxiao Song ◽  
Mi Guo ◽  
Ziwei Wang ◽  
...  

2022 ◽  
Vol 52 (2) ◽  
Author(s):  
Flavia dos Santos Gomes ◽  
Luis Otávio Moreira Silva ◽  
Carolina Beres ◽  
Monica Marques Pagani ◽  
Ana Iraidy Santa Brígida ◽  
...  

ABSTRACT: A comparative study was perfomed with conventional and ultrasound assisted extraction on tomato processing waste. Ultrasound extraction exhibited slightly higher phenolic and flavonoids content, as well as higher ABTS + radical scavenging capacity (4.63 mg GAE.g-1, 0.96 mg RUE.g-1 and 27.90 μmol TE.g -1 respectively). On both extracts, a high percentage of flavonoids was lost during simulated digestion, resulting on a bioacessibility of approximately 13 %. Extracts presented good stability during storage conditions, which indicates a possible technological application.


2021 ◽  
Vol 28 ◽  
Author(s):  
Gabriel Prado ◽  
Isidora Pierattini ◽  
Guiselle Villarroel ◽  
Fernanda Fuentes ◽  
Alejandra Silva ◽  
...  

Background: Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC. Methods: Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases. Results: Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion which are: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage. Conclusion: Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2525
Author(s):  
Daniil N. Olennikov ◽  
Vladimir V. Chemposov ◽  
Nadezhda K. Chirikova

Prickly rose (Rosa acicularis Lindl.) is the most distributed rose species in the Northern Hemisphere, used by indigenous people for various food purposes. The lack of detailed information about the chemical composition of R. acicularis has led us to study the phytochemical composition and metabolic profile of prickly rose extracts using chromatographic techniques. Many groups of phenolic and non-phenolic compounds were quantified in the leaves, flowers, roots and fruits of R. acicularis. Phenolic compounds were the dominant phytochemicals in the aerial parts and roots of R. acicularis. A precise study by high-performance liquid chromatography with photodiode array detection and electrospray ionization triple quadrupole mass spectrometric detection showed the presence of 123 compounds, among which ellagic acid derivatives, ellagitannins, gallotannins, catechins, catechin oligomers, hydroxycinnamates and flavonoid glycosides of kaempferol, quercetin and dihydroquercetin were all identified for the first time. The most abundant phenolic compounds were ellagitannins and flavonoid glycosides, with a maximal content of 70.04 mg/g in leaves and 66.72 mg/g in flowers, respectively, indicating the great ability of R. acicularis organs to accumulate phenolic compounds. By applying a standardized static, simulated gastrointestinal digestion method, we found the inhibitory potential of the leaf extract against digestive α-amylases. A pancreatic α-amylase activity-inhibiting assay coupled with HPLC microfractionation demonstrated high inhibition of enzyme activity by ellagitannin rugosin D, which was later confirmed by a microplate reaction with mammalian α-amylases and the simulated digestion method. This study clearly demonstrates that R. acicularis leaf extract and its main component, ellagitannin rugosin D, strongly inhibit digestive α-amylase, and may be a prospective antidiabetic agent.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3919
Author(s):  
Giuliana Donadio ◽  
Valentina Santoro ◽  
Fabrizio Dal Piaz ◽  
Nunziatina De Tommasi

Arthrospira platensis (Spirulina) has been credited with multiple beneficial effects, many of which are attributed to bioactive peptides produced during the gastrointestinal digestion of this micro-alga. Many Spirulina-based nutraceuticals have been produced, and numerous functional foods enriched with Spirulina are available on the market. These are subjected to checks aimed at verifying the amount of algae actually present, but few studies relating to the bioavailability of the bioactive compounds in these products have been carried out. However, such investigations could be very important to elucidate the possible critical effects exerted by food matrices on protein digestion and bioactive peptide production. Here, in order to assess the suitability of Spirulina-enriched foods as a source of potentially bioactive peptides, a simulated digestion protocol was used in combination with mass spectrometry quantitative analysis to analyze functionalized pasta and sorbets. In the case of the pasta enriched with Spirulina, the production of peptides was quite similar to that of the Spirulina powder. On the other hand, the type of fruit present in the food matrix influenced the digestion of Spirulina inside the sorbets. In particular, the high concentration of protease inhibitors in kiwifruit drastically reduced the production of peptides from Spirulina in kiwi sorbet.


Sign in / Sign up

Export Citation Format

Share Document