Ultrasound-assisted alkali-urea pre-treatment of Miscanthus × giganteus for enhanced extraction of cellulose fiber

2020 ◽  
Vol 247 ◽  
pp. 116758 ◽  
Author(s):  
Singam Suranjoy Singh ◽  
Loong-Tak Lim ◽  
Annamalai Manickavasagan
2021 ◽  
Vol 72 ◽  
pp. 105462
Author(s):  
Dimitrios Tsalagkas ◽  
Zoltán Börcsök ◽  
Zoltán Pásztory ◽  
Parag Gogate ◽  
Levente Csóka

2012 ◽  
Vol 441 ◽  
pp. 640-644
Author(s):  
Ke Jie Fu ◽  
Li Sheng Yang ◽  
Chang Sheng Feng ◽  
Liang Chen

A detecting method for toxic flame retardant finishing agent tris-(2,3-dibromopropyl) -phosphate (TRIS for short) in textiles was studied. In the method, an acetonitrile ultrasound-assisted extraction process was included in sample pre-treatment, and HPLC/DAD was used in the separation and identification of extractives. After that, the conditions of pre-treatment and chromatograph were optimized. The results showed that the limit of detection (LOD) by this method (S/N10) is 1.0 mg/kg, its recovery ranged from 78.1% to 98.4%, and RSD of the precision test is 3.2%, of which all met the requirements for routine testing.


2022 ◽  
Vol 177 ◽  
pp. 114537
Author(s):  
Singam Suranjoy Singh ◽  
Loong-Tak Lim ◽  
Annamalai Manickavasagan

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3310
Author(s):  
María Señoráns ◽  
Natalia Castejón ◽  
Francisco Javier Señoráns

Microalgal biomass is a sustainable and valuable source of lipids with omega-3 fatty acids. The efficient extraction of lipids from microalgae requires fast and alternative extraction methods, frequently combined with biomass pre-treatment by different procedures. In this work, Pressurized liquid extraction (PLE) was optimized and compared with traditional lipid extraction methods, Folch and Bligh and Dyer, and with a new Ultrasound Assisted Extraction (UAE) method for lipids from microalgae Isochrysis galbana. To further optimize PLE and UAE, enzymatic pre-treatment of microalga Isochrysis galbana was studied with commercial enzymes Viscozyme and Celluclast. No significant differences were found for lipid yields among different extraction techniques used. However, advanced extraction techniques with or without pre-treatment are a green, fast, and toxic solvent free alternative to traditional techniques. Lipid composition of Isochrysis was determined by HPLC-ELSD and included neutral and polar lipids, showing that each fraction comprised different contents in omega-3 polyunsaturated fatty acids (PUFA). The highest polar lipids content was achieved with UAE (50 °C and 15 min) and PLE (100 °C) techniques. Moreover, the highest omega-3 PUFA (33.2%), eicosapentaenoic acid (EPA) (3.3%) and docosahexaenoic acid (DHA) (12.0%) contents were achieved with the advanced technique UAE, showing the optimized method as a practical alternative to produce valuable lipids for food and nutraceutical applications.


2017 ◽  
Vol 215 ◽  
pp. 72-77 ◽  
Author(s):  
Madson L. Magalhães ◽  
Samuel J.M. Cartaxo ◽  
Maria Izabel Gallão ◽  
José V. García-Pérez ◽  
Juan A. Cárcel ◽  
...  

2010 ◽  
Vol 47 (10) ◽  
pp. 1042-1049 ◽  
Author(s):  
Ming Zeng ◽  
Huina Gao ◽  
Yaoqing Wu ◽  
Liren Fan ◽  
Tihe Zheng ◽  
...  

2017 ◽  
Vol 48 (2) ◽  
pp. 117 ◽  
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Sunkyu Park ◽  
...  

There is a significant interest in employing solid acid catalysts for pre-treatment of biomasses for subsequent hydrolysis into sugars, because solid acid catalysts facilitate reusability, high activity, and easier separation. Hence the present research investigated pretreatment of four lignocellulosic biomasses, namely Switchgrass (Panicum virgatum L ‘Alamo’), Gamagrass (Tripsacum dactyloides), Miscanthus (Miscanthus × giganteus) and Triticale hay (Triticale hexaploide Lart.) at 90°C for 2 h using three carbon-supported sulfonic acid catalysts. The catalysts were synthesized via impregnating p-Toluenesulfonic acid on carbon (regular) and further impregnated with iron nitrate via two methods to obtain magnetic A and magnetic B catalysts. When tested as pre-treatment agents, a maximum total lignin reduction of 17.73±0.63% was observed for Triticale hay treated with magnetic A catalyst. Furthermore, maximum glucose yield after enzymatic hydrolysis was observed to be 203.47±5.09 mg g–1 (conversion of 65.07±1.63%) from Switchgrass treated with magnetic A catalyst. When reusability of magnetised catalysts were tested, it was observed that magnetic A catalyst was consistent for Gamagrass, Miscanthus × Giganteus and Triticale hay, while magnetic B catalyst was found to maintain consistent yield for switchgrass feedstock. Our results suggested that magnetised solid acid catalyst could pre-treat various biomass stocks and also can potentially reduce the use of harsh chemicals and make bioenergy processes environment friendly.


Sign in / Sign up

Export Citation Format

Share Document