Efficient synthesis of the tetrasaccharide repeating unit of the O-antigen of Escherichia coli O174 strain

2014 ◽  
Vol 399 ◽  
pp. 21-25 ◽  
Author(s):  
Ishani Bhaumik ◽  
Tamashree Ghosh ◽  
Anup Kumar Misra
1968 ◽  
Vol 14 (6) ◽  
pp. 675-678 ◽  
Author(s):  
B. Diena ◽  
R. Wallace ◽  
L. Greenberg

The properties of glycine-induced spheroplasts of six pathogenic serotypes of E. coli were investigated. Fimbriae and flagella appeared to be only partially synthesized as was the somatic O antigen. Cytopathogenicity of these spheroplasts for tissue culture was reduced and the infection of the monolayers was retarded as compared with the normal bacillary forms. Sensitivity to phage was almost completely lost, suggesting that glycine had either interfered with the synthesis of phage receptors or had altered the mucopeptide layerwhich is the substrate for phage enzymes. Alternatively, the phage may become a prophage inside the spheroplast with the loss of virulence.


2005 ◽  
Vol 102 (8) ◽  
pp. 3016-3021 ◽  
Author(s):  
M. F. Feldman ◽  
M. Wacker ◽  
M. Hernandez ◽  
P. G. Hitchen ◽  
C. L. Marolda ◽  
...  

2019 ◽  
Vol 124 ◽  
pp. 389-395 ◽  
Author(s):  
Yuriy A. Knirel ◽  
Pavel A. Ivanov ◽  
Sofiya N. Senchenkova ◽  
Olesya I. Naumenko ◽  
Olga O. Ovchinnikova ◽  
...  

1983 ◽  
Vol 122 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Lennart Kenne ◽  
Bengt Lindberg ◽  
John K. Madden ◽  
Alf A. Lindberg ◽  
Peter Gemski

1998 ◽  
Vol 121 (3) ◽  
pp. 599-608 ◽  
Author(s):  
I. ADLERBERTH ◽  
C. SVANBORG ◽  
B. CARLSSON ◽  
L. MELLANDER ◽  
L.-Å. HANSON ◽  
...  

Resident and transient Escherichia coli strains were identified in the rectal flora of 22 Pakistani infants followed from birth to 6 months of age. All strains were tested for O-antigen expression, adhesin specificity (P fimbriae, other mannose-resistant adhesins or type 1 fimbriae) and adherence to the colonic cell line HT-29. Resident strains displayed higher mannose- resistant adherence to HT-29 cells, and expressed P fimbriae (P=0·0036) as well as other mannose-resistant adhesins (P=0·012) more often than transient strains. In strains acquired during the first month of life, P fimbriae were 12 times more frequent in resident than in transient strains (P=0·0006). The O-antigen distribution did not differ between resident and transient strains, and none of the resident P-fimbriated strains belonged to previously recognized uropathogenic clones. The results suggest that adhesins mediating adherence to intestinal epithelial cells, especially P fimbriae, enhance the persistence of E. coli in the large intestine of infants.


2021 ◽  
Author(s):  
Julie Marin ◽  
Olivier Clermont ◽  
Guilhem Royer ◽  
Melanie Mercier-Darty ◽  
Jean-Winoc Decousser ◽  
...  

Escherichia coli is a commensal species of the lower intestine, but also a major pathogen causing intestinal and extra-intestinal infections. Most studies on genomic evolution of E. coli used isolates from infections, and/or focused on antibiotic resistance, but neglected the evolution of virulence. Here instead, we whole-genome sequenced a collection of 436 E. coli isolated from fecal samples of healthy adult volunteers in France between 1980 and 2010. These isolates were distributed among 159 sequence types (STs), the five most frequent being ST10 (15.6%), ST73 (5.5%) and ST95 (4.8%), ST69 (3.7%) and ST59 (3.7%), and 230 O:H serotypes. ST and serotype diversity increased over time. Comparison with 912 E. coli bacteremia isolates from similar region and time showed a greater diversity in commensal isolates. The O1, O2, O6 and O25-groups used in bioconjugate O-antigen vaccine were found in only 63% of the four main STs associated with a high risk of bacteremia (ST69, ST73, ST95 and ST131). In commensals, STs associated with a high risk of bacteremia increased in frequency. Both extra-intestinal virulence-associated genes and resistance to antibiotics increased in frequency. Evolution of virulence genes was driven by both clonal expansion of STs with more virulence genes, and increases in frequency within STs, whereas the evolution of resistance was dominated by increases in frequency within STs. This study provides a unique picture of the phylogenomic evolution of E. coli in its human commensal habitat over a 30-year period and suggests that the efficacy of O-antigen vaccines would be threatened by serotype replacement.


2007 ◽  
Vol 56 (5) ◽  
pp. 620-628 ◽  
Author(s):  
Matthew W. Gilmour ◽  
Adam B. Olson ◽  
Ashleigh K. Andrysiak ◽  
Lai-King Ng ◽  
Linda Chui

Serogroup classifications based upon the O-somatic antigen of Shiga toxin-producing Escherichia coli (STEC) provide significant epidemiological information on clinical isolates. Each O-antigen determinant is encoded by a unique cluster of genes present between the gnd and galF chromosomal genes. Alternatively, serogroup-specific polymorphisms might be encoded in loci that are encoded outside of the O-antigen gene cluster. Segments of the core bacterial loci mdh, gnd, gcl, ppk, metA, ftsZ, relA and metG for 30 O26 STEC strains have previously been sequenced, and comparative analyses to O157 distinguished these two serogroups. To screen these loci for serogroup-specific traits within a broader range of clinically significant serogroups, DNA sequences were obtained for 19 strains of 10 additional STEC serogroups. Unique alleles were observed at the gnd locus for each examined STEC serogroup, and this correlation persisted when comparative analyses were extended to 144 gnd sequences from 26 O-serogroups (comprising 42 O : H-serotypes). These included O157, O121, O103, O26, O5 : non-motile (NM), O145 : NM, O113 : H21, O111 : NM and O117 : H7 STEC; and furthermore, non-toxin encoding O157, O26, O55, O6 and O117 strains encoded distinct gnd alleles compared to STEC strains of the same serogroup. DNA sequencing of a 643 bp region of gnd was, therefore, sufficient to minimally determine the O-antigen of STEC through molecular means, and the location of gnd next to the O-antigen gene cluster offered additional support for the co-inheritance of these determinants. The gnd DNA sequence-based serogrouping method could improve the typing capabilities for STEC in clinical laboratories, and was used successfully to characterize O121 : H19, O26 : H11 and O177 : NM clinical isolates prior to serological confirmation during outbreak investigations.


2012 ◽  
Vol 30 (5) ◽  
pp. 511-522 ◽  
Author(s):  
Michael Wetter ◽  
Michael Kowarik ◽  
Michael Steffen ◽  
Paula Carranza ◽  
Giampietro Corradin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document