An assessment framework for the mitigation effects of check dams on debris flow

CATENA ◽  
2017 ◽  
Vol 152 ◽  
pp. 277-284 ◽  
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Ali Forghani
Geomorphology ◽  
2019 ◽  
Vol 345 ◽  
pp. 106844 ◽  
Author(s):  
Sara Cucchiaro ◽  
Federico Cazorzi ◽  
Lorenzo Marchi ◽  
Stefano Crema ◽  
Alberto Beinat ◽  
...  

Author(s):  
Jošt Sodnik ◽  
Manica Martinčič ◽  
Matjaž Mikoš ◽  
Andrej Kryžanowski
Keyword(s):  

2020 ◽  
Author(s):  
Carlo Gregoretti ◽  
Matteo Barbini ◽  
Martino Bernard ◽  
Mauro Boreggio

<p>Many sites of the Dolomites are threatened by channelized debris flows: solid-liquid surges initiated by the entrainment of large quantities of sediments into the abundant runoff at the head of channel incised on fans, can dramatically increase their volume along the downstream routing. This is the case of the Rovina di Cancia site where solid-liquid surges forming in the upper part of the basin can increase their volume up and over 50000 m<sup>3</sup>, seriously impacting the downstream village of Borca di Cadore. The debris-flow channel ends just upstream the village that in the past was hit by four debris flows (three in the recent years) that caused victims and destructions. Control works built until now are not sufficient to protect the village from high magnitude debris flows and a definitive solution calls to be planned. Present works are a flat deposition area, 300 m downstream the initiation area, an open dam under construction downstream it, and  two retention basins at the end of the channel. Between the open dam and the upstream retention basin, there are the rest of eight check-dams made of gabions, built in the 60s and progressively damaged or destroyed by the debris flows occurred after their construction. This series of check-dams limited the entrainment of solid material and the occurrence of localized scours. The initial plan is the substitution of the check-dams with concrete structures and the widening of the dowsntream retention basin through the raising of high elevation embankment downstream it and the following demolition of the actual dyke. Finally, a channel crossing the village and national route on the valley bottom will deliver the fluid phase from the widened basin to the Boite river. All these control works have a very high cost for construction and maintenance and severely impact the village with the presence of a non-negligible residual risk. These drawbacks call for an alternative solution that is searched looking at to the morphology. Downstream of the open dam and on its right side, there is a deep impluvium that ends on a large grass sloping area. The novel solution requires the construction of a channel through the right high bank that deviates the debris flow into the impluvium. The impluvium, widened through the excavation of the surrounding slopes, is closed at the outlet by  an open dam. Downstream the open dam, a channel will lead to a retention basin, where most of storage volume is obtained from the excavation of the grass sloping area, limiting the elevation of the dykes At the end of this basin an open dam will deliver the debris-flow fluid part to a channel passing under the national route and joining the Boite river. Such a solution composed of a deviatory channel, two retention basins (the deep impluvium and that excavated on the sloping grass area) and the channels between and downstream them, has quite a lower costs of construction and maintenance, eliminating the impact on the village because occupying uninhabited areas without interrupting the main roads.</p>


2021 ◽  
Author(s):  
Jiangang Chen ◽  
Xi'an Wang ◽  
Huayong Chen

<p>A series of check dams were constructed for debris-flow hazard mitigation in China. Based on the results of field investigation, check dam has a significant impact on the geomorphology of debris flow gully, especially the upstream and downstream of a check dam. According to the relationship between the sediment deposition thickness and the check dam height, the running status of a check dam can be divided into three states: without sediment deposition, half of the storage capacity with sediment deposition, and full of sediment deposition. With the accumulation of sediment transport, the running state of a check dam gradually changed and the sediment-trapping effect of check dams has gradually weakened, leading to the loss of part of the disaster mitigation effect, increasing the risk of downstream infrastructure and human security. Therefore, experiments with multi-surges of debris flows were carried out to study the geomorphic and sediment-trapping effectiveness of check dams. The results showed that with the increase of the sediment amount with multi-surges, the deposition slope in the downstream dam approached or even exceeded that of upstream dam. For one surge, deposition morphology has slightly difference in the cascade dams. At last, a method for calculating the reduction coefficient of deposition slope considering the check dam height and sediment amount with multi-surges is proposed.</p>


2008 ◽  
Vol 8 (6) ◽  
pp. 1403-1416 ◽  
Author(s):  
A. Remaître ◽  
Th. W. J. van Asch ◽  
J.-P. Malet ◽  
O. Maquaire

Abstract. Debris flows are very dangerous phenomena claiming thousands of lives and millions of Euros each year over the world. Disaster mitigation includes non-structural (hazard mapping, insurance policies), active structural (drainage systems) and passive structural (check dams, stilling basins) countermeasures. Since over twenty years, many efforts are devoted by the scientific and engineering communities to the design of proper devices able to capture the debris-flow volume and/or break down the energy. If considerable theoretical and numerical work has been performed on the size, the shape and structure of check dams, allowing the definition of general design criteria, it is worth noting that less research has focused on the optimal location of these dams along the debris-flow pathway. In this paper, a methodological framework is proposed to evaluate the influence of the number and the location of the check dams on the reduction of the debris-flow intensity (in term of flow thickness, flow velocity and volume). A debris-flow model is used to simulate the run-out of the debris flow. The model uses the Janbu force diagram to resolve the force equilibrium equations; a bingham fluid rheology is introduced and represents the resistance term. The model has been calibrated on two muddy debris-flow events that occurred in 1996 and 2003 at the Faucon watershed (South French Alps). Influence of the check dams on the debris-flow intensity is quantified taking into account several check dams configurations (number and location) as input geometrical parameters. Results indicate that debris-flow intensity is decreasing with the distance between the source area and the first check dams. The study demonstrates that a small number of check dams located near the source area may decrease substantially the debris-flow intensity on the alluvial fans.


2021 ◽  
Author(s):  
Liqun Lyu ◽  
Mengzhen Xu ◽  
Guanyu Zhou ◽  
Zhaoyin Wang

Abstract Debris flows in waterways can transport large amounts of sediment downstream, which can cause serious damage and economic losses. The vegetation cover in the valley of the Xiaojiang River in Yunnan Province, China—classified as a dry-hot valley—was significantly reduced by logging in the 1950s. Soil erosion intensified and 107 gullies developed, which led to debris flows along the 86 km length of the river. Jiangjia Gully is a tributary of the Xiaojiang River. Historically, debris flows have occurred frequently, blocking the Xiaojiang River seven times between 1957 and 2000. Since 2000, the construction of check dams and afforestation have decreased the volume of debris flows in the three tributaries of Jiangjia Gully. However, different combinations of check dams and afforestation were adopted in the three tributaries of Jiangjia Gully, which has led to the different trends in debris flows behaviour. A new method was established to evaluate the mitigative effect of check dams and afforestation on debris flows. We found that the debris flow volume was proportional to the gravity energy of soil and rock on the gully bank and inversely proportional to the vegetation coverage in a dry-hot valley setting. The method revealed that under different gravity energy conditions, the implementation order of check dam construction and afforestation is important for debris flow mitigation.


Landslides ◽  
2020 ◽  
Vol 17 (7) ◽  
pp. 1703-1711 ◽  
Author(s):  
Jiangang Chen ◽  
Daozheng Wang ◽  
Wanyu Zhao ◽  
Huayong Chen ◽  
Tao Wang ◽  
...  

2020 ◽  
Vol 122 ◽  
pp. 103541 ◽  
Author(s):  
Wei Shen ◽  
Tonglu Li ◽  
Ping Li ◽  
Yulu Lei

Sign in / Sign up

Export Citation Format

Share Document