Zn isotope fractionation during the development of low-humic gleysols from the Mun River Basin, northeast Thailand

CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105565
Author(s):  
Bin Liang ◽  
Guilin Han ◽  
Man Liu ◽  
Xiaoqiang Li
2020 ◽  
Vol 12 (2) ◽  
pp. 457 ◽  
Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Chao Song ◽  
Xiaoqiang Li

Exploring the distributions of rare earth elements (REEs) in soil profiles is essential to understanding how natural and anthropogenic factors influence the geochemical behaviors of REEs. This study aimed to learn about the distribution characteristics of REEs in soils, including their fractionation and enrichment, and to explore the influence of soil pH and soil organic carbon (SOC) on REEs. One hundred and three samples were collected from six soil profiles under different land uses (paddy field: T1, T3; forest land: T2, T6; wasteland: T4; building site: T5) in the Mun River Basin, Northeast Thailand. The average total REE contents (∑REE) are much lower (<80 mg kg−1) than that of Earth’s crust (153.80 mg kg−1) in soil profiles T2, T3, T4, and T6. The contents of REEs tend to increase slightly with depth in all soil profiles. The ratios of (La/Yb)N range from 0.35 to 0.96 in most samples, indicating that the enrichment of heavy REEs (HREEs) relative to light REEs (LREEs) is the main fractionation pattern. Samples from profile T2 show relatively obvious negative Ce anomalies (0.55–0.78) and positive Eu anomalies (1.41–1.56), but there are almost no anomalies of Ce and Eu in other soil profiles. Enrichment factors of LREEs (EFLREEs) range from 0.23 to 1.54 and EFHREEs range from 0.34 to 2.27, which demonstrates that all soil samples show no LREE enrichment and only parts of samples show minor HREE enrichment. Soil organic carbon (SOC) contents positively correlate with the enrichment factors of REEs (EFREE) in soil profiles T1 (R = 0.56, p < 0.01) and T6 (R = 0.71), while soil pH values correlate well with EFREE in soil profiles T2 (R = 0.75) and T4 (R = −0.66, p < 0.01), indicating the important influence of soil pH and SOC on the mobility of REEs in some soil profiles.


Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Chao Song ◽  
Xiaoqiang Li ◽  
...  

Exploring the enrichment and controlling factors of heavy metals in soils is essential because heavy metals can cause severe soil contamination and threaten human health when they are excessively enriched in soils. Soil samples (total 103) from six soil profiles (T1 to T6) in the Mun River Basin, Northeast Thailand, were collected for the analyses of the content of heavy metals, including Sc, V, Co, Ni, Mo, Ba. The average contents of soil heavy metals decrease in the following order: Ba, V, Ni, Sc, Co, and Mo (T1, T3, T4 and T5); Ni, V, Ba, Co, Sc, Mo, and Ba (T2); Ba, V, Sc, Ni, Mo, and Co (T6). An enrichment factor (EF) and geoaccumulation index were calculated to assess the degree of heavy metal contamination in the soils. The EFs of these heavy metals in most samples range from 0 to 1.5, which reveals that most heavy metals are slightly enriched. Geoaccumulation indexes show that only the topsoil of T1 and T2 is slightly contaminated by Ba, Sc, Ni, and V. Soil organic carbon (SOC), soil pH and soil texture are significantly positively correlated with most heavy metals, except for a negative correlation between soil pH and Mo content. In conclusion, the influence of heavy metals on soils in the study area is slight and SOC, soil pH, soil texture dominate the behavior of heavy metals.


1965 ◽  
Vol 60 (2) ◽  
pp. 199-213 ◽  
Author(s):  
J. N. Rosholt ◽  
A. P. Butler ◽  
E. L. Garner ◽  
W. R. Shields

2008 ◽  
Vol 43 (4) ◽  
pp. 557-570 ◽  
Author(s):  
Malasri Khumsri ◽  
Kenneth Ruddle ◽  
Ganesh P. Shivakoti

Author(s):  
Rui Qu ◽  
Guilin Han ◽  
Man Liu ◽  
Xiaoqiang Li

To determine the geochemical characteristics and contamination of soil mercury in the Mun River basin, northeast Thailand, the vertical mercury distribution patterns and mercury contamination levels in six soil profiles under different land uses are studied. A total of 240 soil samples collected from agricultural land, abandoned agricultural land, and woodland were analyzed by an RA-915M mercury analyzer to determine the total mercury (THg) content, which ranged from 0.13 to 69.40 μg∙kg−1 in the study area. In the soil cultivation layer (0–30 cm), the average content of THg in the woodland (15.89 μg∙kg−1) and the agricultural land (13.48 μg∙kg−1) were higher than that in the abandoned agricultural land (4.08 μg∙kg−1), indicating that the plants or crops could increase the content of mercury in the surface soil layer. The total organic carbon (TOC) and iron content with high positive correlations with the THg content significantly contributed to the adsorption of soil mercury. Moreover, a higher pH value in the soil and a finer grain size in soil texture can be beneficial for the enrichment of mercury. A geoaccumulation index was used to evaluate the contamination of mercury, showing that this area had a slight contamination, and a few soil sites were moderate contamination.


2015 ◽  
Vol 164 ◽  
pp. 71-93 ◽  
Author(s):  
Mathieu Dellinger ◽  
Jerome Gaillardet ◽  
Julien Bouchez ◽  
Damien Calmels ◽  
Pascale Louvat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document