Land use and land cover change-induced changes of sediment connectivity and their effects on sediment yield in a catchment on the Loess Plateau in China

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105688
Author(s):  
Wei Liu ◽  
Changxing Shi ◽  
Yongyong Ma ◽  
Huijuan Li ◽  
Xiaoqing Ma
2012 ◽  
Vol 16 (8) ◽  
pp. 2617-2628 ◽  
Author(s):  
X. M. Feng ◽  
G. Sun ◽  
B. J. Fu ◽  
C. H. Su ◽  
Y. Liu ◽  
...  

Abstract. The general relationships between vegetation and water yield under different climatic regimes are well established at a small watershed scale in the past century. However, applications of these basic theories to evaluate the regional effects of land cover change on water resources remain challenging due to the complex interactions of vegetation and climatic variability and hydrologic processes at the large scale. The objective of this study was to explore ways to examine the spatial and temporal effects of a large ecological restoration project on water yield across the Loess Plateau region in northern China. We estimated annual water yield as the difference between precipitation input and modelled actual evapotranspiration (ET) output. We constructed a monthly ET model using published ET data derived from eddy flux measurements and watershed streamflow data. We validated the ET models at a watershed and regional levels. The model was then applied to examine regional water yield under land cover change and climatic variability during the implementation of the Grain-for-Green (GFG) project during 1999–2007. We found that water yield in 38% of the Loess Plateau area might have decreased (1–48 mm per year) as a result of land cover change alone. However, combined with climatic variability, 37% of the study area might have seen a decrease in water yield with a range of 1–54 mm per year, and 35% of the study area might have seen an increase with a range of 1–10 mm per year. Across the study region, climate variability masked or strengthened the water yield response to vegetation restoration. The absolute annual water yield change due to vegetation restoration varied with precipitation regimes with the highest in wet years, but the relative water yield changes were most pronounced in dry years. We concluded that the effects of land cover change associated with ecological restoration varied greatly over time and space and were strongly influenced by climatic variability in the arid region. The current regional vegetation restoration projects have variable effects on local water resources across the region. Land management planning must consider the influences of spatial climate variability and long-term climate change on water yield to be more effective for achieving environmental sustainability.


2020 ◽  
Vol 712 ◽  
pp. 136449 ◽  
Author(s):  
Helen Aghsaei ◽  
Naghmeh Mobarghaee Dinan ◽  
Ali Moridi ◽  
Zahra Asadolahi ◽  
Majid Delavar ◽  
...  

2020 ◽  
Vol 12 (17) ◽  
pp. 7128
Author(s):  
Wei Jiang ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau is not only a critical region that suffers from ecological threats but also a valuable region that provides various fundamental ecosystem services, including provisioning, regulating and cultural services to about 8% of the Chinese population. The specific natural environment and extensive human activities have led to substantial land use/land cover changes between 1990 and 2015, such as the decrease in cropland with the increase in forests and grasslands due to the implementation of the Grain for Green Program since 2000 and the expansion of built-up areas with economic development and population growth. However, the effects of these changes on ecosystem service values have not yet been considered. In this study, the approach based on a combination of land use/land cover proxies and benefit transfer is applied to assess ecosystem service value changes resulting from land use/land cover changes in the 1990–2000, 2000–2010 and 2010–2015 periods. The results reveal that the total value of ecosystem services has been reduced by $6.787 million from 1990 to 2000 and increased by $4.6 million from 2000 to 2015. The elasticity analysis shows that a 1% area conversion has induced average value changes of 1.03%, 0.38% and 0.05% in the three periods, respectively. Elasticity is developed as an indicator for locating unusual changes among different regions and identifying specific needs for ecosystem management.


2014 ◽  
Vol 129 (3-4) ◽  
pp. 427-440 ◽  
Author(s):  
Xingang Fan ◽  
Zhuguo Ma ◽  
Qing Yang ◽  
Yunhuan Han ◽  
Rezaul Mahmood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document