Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity

2020 ◽  
Author(s):  
Fei Yuan ◽  
Guanghui Zhang ◽  
Jie Zhu ◽  
Fanshu Ding ◽  
Anfeng Zhang ◽  
...  
2019 ◽  
Vol 9 (2) ◽  
pp. 456-464 ◽  
Author(s):  
Binglian Liang ◽  
Ting Sun ◽  
Junguo Ma ◽  
Hongmin Duan ◽  
Lin Li ◽  
...  

Addition of Mn to Na/Fe catalysts enhanced light olefin selectivity in CO2 hydrogenation through modulation of the C–C coupling reaction.


Reactions ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 227-257
Author(s):  
Arash Yahyazadeh ◽  
Ajay K. Dalai ◽  
Wenping Ma ◽  
Lifeng Zhang

Light olefins as one the most important building blocks in chemical industry can be produced via Fischer–Tropsch synthesis (FTS) from syngas. FT synthesis conducted at high temperature would lead to light paraffins, carbon dioxide, methane, and C5+ longer chain hydrocarbons. The present work focuses on providing a critical review on the light olefin production using Fischer–Tropsch synthesis. The effects of metals, promoters and supports as the most influential parameters on the catalytic performance of catalysts are discussed meticulously. Fe and Co as the main active metals in FT catalysts are investigated in terms of pore size, crystal size, and crystal phase for obtaining desirable light olefin selectivity. Larger pore size of Fe-based catalysts is suggested to increase olefin selectivity via suppressing 1-olefin readsorption and secondary reactions. Iron carbide as the most probable phase of Fe-based catalysts is proposed for light olefin generation via FTS. Smaller crystal size of Co active metal leads to higher olefin selectivity. Hexagonal close-packed (HCP) structure of Co has higher FTS activity than face-centered cubic (FCC) structure. Transition from Co to Co3C is mainly proposed for formation of light olefins over Co-based catalysts. Moreover, various catalysts’ deactivation routes are reviewed. Additionally, techno-economic assessment of FTS plants in terms of different costs including capital expenditure and minimum fuel selling price are presented based on the most recent literature. Finally, the potential for global environmental impacts associated with FTS plants including atmospheric and toxicological impacts is considered via lifecycle assessment (LCA).


2018 ◽  
Vol 11 (03) ◽  
pp. 1850057 ◽  
Author(s):  
Reza Meshkini Far ◽  
Olena V. Ischenko ◽  
Alla G. Dyachenko ◽  
Oleksandr Bieda ◽  
Snezhana V. Gaidai ◽  
...  

Here, we report, for the first time, on the catalytic hydrogenation of CO2 to methane at atmospheric pressure. For the preparation of hydrogenation catalysts based on Ni and Fe metals, a convenient method is developed. According to this method, low-temperature reduction of the co-precipitated Ni and Fe oxides with hydrogen gives the effective and selective bimetallic Ni[Formula: see text]Fe[Formula: see text], Ni[Formula: see text]Fe[Formula: see text] and Ni[Formula: see text]Fe[Formula: see text] catalysts. At the temperature range of 300–400[Formula: see text]C, they exhibit a high efficiency of CH4 production with respect to monometallic Ni and Fe catalysts. The results imply a synergistic effect between Ni and Fe which caused the superior activity of the Ni[Formula: see text]Fe[Formula: see text] catalyst conversing [Formula: see text]% of CO2 into CH4 at 350[Formula: see text]C. To adapt the Ni–Fe catalysts in the industry, the effect of two different carriers on the efficiency of the alumina-supported Ni[Formula: see text]Fe[Formula: see text] catalyst was investigated. It is found that the Ni[Formula: see text]Fe[Formula: see text]/[Formula: see text]-Al2O3 catalyst effectively conversed CO2 giving 100% methane yield already at 275[Formula: see text]C.


2015 ◽  
Vol 44 (12) ◽  
pp. 1697-1699 ◽  
Author(s):  
Subing Fan ◽  
Jiao Zhou ◽  
Junmin Lv ◽  
Min Liu ◽  
Hantao Huang ◽  
...  

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122105
Author(s):  
Zhiqiang Zhang ◽  
Gongxun Huang ◽  
Xinglei Tang ◽  
Haoren Yin ◽  
Jincan Kang ◽  
...  

2018 ◽  
Vol 47 (29) ◽  
pp. 9861-9870 ◽  
Author(s):  
Syed ul Hasnain Bakhtiar ◽  
Xiaotong Wang ◽  
Sher Ali ◽  
Fulong Yuan ◽  
Zhibin Li ◽  
...  

SAPO-34 shows higher light olefin selectivity in the reaction of methanol to olefin (MTO), but its small pore system implies diffusion limitations to bigger molecular products and results in coking too.


2019 ◽  
Vol 149 (9) ◽  
pp. 2508-2518 ◽  
Author(s):  
Weijie Cai ◽  
Qing Chen ◽  
Fagen Wang ◽  
Zhongcheng Li ◽  
Hao Yu ◽  
...  

2015 ◽  
Vol 26 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Ki-Hwan Choi ◽  
Dong-Hee Lee ◽  
Hyo-Sub Kim ◽  
Chu-Sik Park ◽  
Young-Ho Kim

Author(s):  
Peng Zhang ◽  
Lixuan Ma ◽  
Fanhui Meng ◽  
Lina Wang ◽  
Riguang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document