16S rRNA sequencing analysis of the correlation between the intestinal microbiota and body-mass of grass carp (Ctenopharyngodon idella)

Author(s):  
Shen-Tong Wang ◽  
Xin-Zhan Meng ◽  
Jia-Hua Zhang ◽  
Ya-Fan Dai ◽  
YuBang Shen ◽  
...  
2020 ◽  
Vol 48 (5) ◽  
pp. 758-767
Author(s):  
Rocio Parra-Laca ◽  
Laura Hernández-Andrade ◽  
Gary García-Espinosa ◽  
Elizabeth Loza-Rubio

The production of Nile tilapia (Oreochromis niloticus) has good technological development; however, today, it is still necessary to make it more efficient. One way to increase efficiency is to prevent disease and improve the food conversion factor. Since previous investigations of tilapia microbiota detected a high proportion of organisms belonging to the order Actinomycetes, this study was to isolate, identify, and describe the species of bacteria microbiota belonging to the cultured Nile tilapia. These were done with Nile tilapia grown in a warm sub-humid climate during spring and summer seasons. The biopsy of different organs was performed for bacteriological culture and 16S rRNA sequencing analysis. From the 180 tissue samples, 49 isolates of the order Actinomycetes were obtained, representing ten species from seven genera: Microbacterium, Brevibacterium, Cellulomonas, Corynebacterium, Kocuria, Actinomyces, and Micrococcus. In spring, Microbacterium dominated, accounting for 74% of the total population. In the summer, lower diversity was observed, with 39% represented by Microbacterium. 16S rRNA sequencing analysis enabled the classification of Actinomyces neuii and Microbacterium lacticum as Kocuria varians and Agromyces indicus; the classification of Microbacterium imperiale as Rhodococcus and Micrococcus luteus was confirmed. No sequences of K. varians have been reported in fish. Microbacterium dextranoliticum showed high similarity to environmental samples. Here is the first study that analyzes the bacteria population in tilapia at the genetic level with an ecosystem approach, present in healthy cultured tilapia, indicating their beneficial associations with the host, making them candidates as probiotics, among other possible functions, applicable in tilapia cultivation.


2021 ◽  
Vol 9 (5) ◽  
pp. 1075
Author(s):  
Chan-Mi Park ◽  
Gyoung-Min Kim ◽  
Gun-Su Cha

Lactic acid bacteria (LAB) are generally recognized as safe (GRAS) microorganisms. This study aimed to identify novel LAB strains that can transform flavonoids into aglycones to improve bioavailability. We isolated 34 LAB strains from kimchi. The biotransformation activity of these 34 LAB strains was investigated based on α-L-rhamnosidase and β-D-glucosidase activities. Among them, 10 LAB strains with high activities were identified by 16S rRNA sequencing analysis. All tested LAB strains converted hesperidin to hesperetin (12.5–30.3%). Of these, only the Lactobacillus pentosus NGI01 strain produced quercetin from rutin (3.9%). The optimal biotransformation conditions for the L. pentosus NGI01 producing hesperetin and quercetin were investigated. The highest final product concentrations of hesperetin and quercetin were 207 and 78 μM, respectively. Thus, the L. pentosus NGI01 strain can be a biocatalyst for producing flavonoid aglycones in the chemical and food industries.


Gut Microbes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 1139-1142 ◽  
Author(s):  
Amy M. Tsou ◽  
Scott W. Olesen ◽  
Eric J. Alm ◽  
Scott B. Snapper

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lin Kang ◽  
Pengtao Li ◽  
Danyang Wang ◽  
Taihao Wang ◽  
Dong Hao ◽  
...  

Abstract16S rRNA sequencing of human fecal samples has been tremendously successful in identifying microbiome changes associated with both aging and disease. A number of studies have described microbial alterations corresponding to physical frailty and nursing home residence among aging individuals. A gut-muscle axis through which the microbiome influences skeletal muscle growth/function has been hypothesized. However, the microbiome has yet to be examined in sarcopenia. Here, we collected fecal samples of 60 healthy controls (CON) and 27 sarcopenic (Case)/possibly sarcopenic (preCase) individuals and analyzed the intestinal microbiota using 16S rRNA sequencing. We observed an overall reduction in microbial diversity in Case and preCase samples. The genera Lachnospira, Fusicantenibacter, Roseburia, Eubacterium, and Lachnoclostridium—known butyrate producers—were significantly less abundant in Case and preCase subjects while Lactobacillus was more abundant. Functional pathways underrepresented in Case subjects included numerous transporters and phenylalanine, tyrosine, and tryptophan biosynthesis suggesting that protein processing and nutrient transport may be impaired. In contrast, lipopolysaccharide biosynthesis was overrepresented in Case and PreCase subjects suggesting that sarcopenia is associated with a pro-inflammatory metagenome. These analyses demonstrate structural and functional alterations in the intestinal microbiota that may contribute to loss of skeletal muscle mass and function in sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document