New thiosemicarbazone-based Zinc(II) complexes. In vitro cytotoxicity competing with cisplatin on malignant melanoma A375 cells and its relation to neuraminidase inhibition

2021 ◽  
pp. 109757
Author(s):  
Büşra Kaya ◽  
Ferdane Danışman Kalındemirtaş ◽  
Onur Ertik ◽  
Refiye Yanardag ◽  
Serap Erdem Kuruca ◽  
...  
2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Mohammad Zandi

Background: Annually, various types of cancer cause thousands of deaths globally, and identifying an appropriate therapeutic option for these disorders is of crucial importance. Side effects of anticancer drugs can be reduced through the promising strategy of combination therapy. Objectives: The present paper has investigated the in vitro cytotoxicity of Taxol, carboplatin, vinblastine, and vincristine alone and in combination against human malignant melanoma A375 cells and non-cancerous fibroblast HU2 cells to examine the possible side effects of the drugs. Methods: The cells were subjected to the examined compounds for 48 h, and the MTT test was conducted to evaluate the cytotoxicity. Results: The results indicated that the most significant effect was related to 120 μg/mL vincristine and 7.5 μg/mL Taxol+ vincristine treatments, with the survival amounts of 24 ± 0.6 and 28 ± 0%, respectively. In addition, the best 50% inhibitory effect was found to be related to Taxol + vincristine, vinblastine, and Taxol+ vinblastine treatments at the concentrations of 0.04, 2.2, and 3.4 μg/mL, respectively. Conclusions: According to the findings of in vitro toxicity, the evaluated complexes are not cytotoxic against human fibroblast HU2 cells. Also, the most significant effect on A375 cells was associated with vincristine treatment. No synergistic reaction was recorded among the different combinations of drugs based on the calculated CI values.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 819
Author(s):  
Alexandra Ciorîță ◽  
Maria Suciu ◽  
Sergiu Macavei ◽  
Irina Kacso ◽  
Ildiko Lung ◽  
...  

Medicinal plants are often used as reducing agents to prepare metal nanoparticles through green-synthesis due to natural compounds and their potential as chemotherapeutic drugs. Thus, three types of eco-friendly Ag-MnO2 nanoparticles (Ag-MnO2NPs) were synthesized using C. majus (CmNPs), V. minor (VmNPs), and a 1:1 mixture of the two extracts (MNPs). These NPs were characterized using S/TEM, EDX, XRD, and FTIR methods, and their biological activity was assessed in vitro on normal keratinocytes (HaCaT) and skin melanoma cells (A375). All synthesized NPs had manganese oxide in the middle, and silver oxide and plant extract on the exterior. The NPs had different forms (polygonal, oval, and spherical), uniformly distributed, with crystalline structures and different sizes (9.3 nm for MNPs; 10 nm for VmNPs, and 32.4 nm for CmNPs). The best results were obtained with VmNPs, which reduced the viability of A375 cells up 38.8% and had a moderate cytotoxic effect on HaCaT (46.4%) at concentrations above 500 µg/mL. At the same concentrations, CmNPs had a rather proliferative effect, whereas MNPs negatively affected both cell lines. For the first time, this paper proved the synergistic action of the combined C. majus and V. minor extracts to form small and uniformly distributed Ag-MnO2NPs with high potential for selective treatments.


2021 ◽  
Vol 89 (1) ◽  
pp. 12
Author(s):  
Banele Ndlovu ◽  
Maryna De Kock ◽  
Jeremy Klaasen ◽  
Farzana Rahiman

Malignant melanoma is the major cause of skin cancer-related deaths. Surgery in combination with radiotherapy, immunotherapy or chemotherapy is used to eradicate cancer cells, however, this treatment option is limited by the tolerance of the surrounding healthy tissue. The extracts from Galenia africana have been shown to possess anti-cancer flavonoid compounds and can be a safer and cost-effective alternative treatment. The study aimed to compare the anti-proliferative effects of G. africana on human skin cells (HaCaT) and human malignant melanoma cells (A375). The cells were exposed to various concentrations of the G. africana extract at different times. In vitro assays were employed to determine cell viability and cytotoxicity. Hoechst 33342 staining was performed to observe the nuclear changes, including apoptosis. G. africana significantly reduced the cell viability of the A375 cells in a dose and time-dependent manner, while having no effect on the HaCaT cells. The A375 cells displayed nuclear condensation, brightly stained nuclei and nuclear fragmentation indicative of apoptosis. This suggests a clinical rationale for the use of G. africana as a potential anti-melanoma agent offering efficacy and low toxicity. This study provides new insights for future work on investigating the utilization of G. africana in malignant melanoma treatment.


2019 ◽  
Vol 39 (2) ◽  
pp. 591-596 ◽  
Author(s):  
THEODORA MANTSO ◽  
IOANNIS ANESTOPOULOS ◽  
ELEFTHERIA LAMPRIANIDOU ◽  
IOANNIS KOTSIANIDIS ◽  
AGLAIA PAPPA ◽  
...  

2018 ◽  
Vol 21 (4) ◽  
pp. 262-270 ◽  
Author(s):  
Zehao Huang ◽  
Na Li ◽  
Kaifeng Rao ◽  
Cuiting Liu ◽  
Zijian Wang ◽  
...  

Background: More than 2,000 chemicals have been used in the tannery industry. Although some tannery chemicals have been reported to have harmful effects on both human health and the environment, only a few have been subjected to genotoxicity and cytotoxicity evaluations. Objective: This study focused on cytotoxicity and genotoxicity of ten tannery chemicals widely used in China. Materials and Methods: DNA-damaging effects were measured using the SOS/umu test with Salmonella typhimurium TA1535/pSK1002. Chromosome-damaging and cytotoxic effects were determined with the high-content in vitro Micronucleus test (MN test) using the human-derived cell lines MGC-803 and A549. Conclusion: The cytotoxicity of the ten tannery chemicals differed somewhat between the two cell assays, with A549 cells being more sensitive than MGC-803 cells. None of the chemicals induced DNA damage before metabolism, but one was found to have DNA-damaging effects on metabolism. Four of the chemicals, DY64, SB1, DB71 and RR120, were found to have chromosome-damaging effects. A Quantitative Structure-Activity Relationship (QSAR) analysis indicated that one structural feature favouring chemical genotoxicity, Hacceptor-path3-Hacceptor, may contribute to the chromosome-damaging effects of the four MN-test-positive chemicals.


2018 ◽  
Vol 15 (4) ◽  
pp. 564-575 ◽  
Author(s):  
Arehalli S. Manjappa ◽  
Popat S. Kumbhar ◽  
Prajakta S. Khopade ◽  
Ajit B. Patil ◽  
John I. Disouza

Sign in / Sign up

Export Citation Format

Share Document