Properties of slow- and fast-twitch skeletal muscle from mice with an inherited capacity for hypoxic exercise

Author(s):  
J.David Luedeke ◽  
R.Dale McCall ◽  
Richard M Dillaman ◽  
Stephen T Kinsey
1982 ◽  
Vol 257 (19) ◽  
pp. 11689-11695
Author(s):  
W B Van Winkle ◽  
R J Bick ◽  
D E Tucker ◽  
C A Tate ◽  
M L Entman

1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


1987 ◽  
Vol 65 (4) ◽  
pp. 697-703 ◽  
Author(s):  
Roberto T. Sudo ◽  
Gisele Zapata ◽  
Guilherme Suarez-Kurtz

The characteristics of transient contractures elicited by rapid cooling of frog or mouse muscles perfused in vitro with solutions equilibrated with 0.5–2.0% halothane are reviewed. The data indicate that these halothane-cooling contractures are dose dependent and reproducible, and their amplitude is larger in muscles containing predominantly slow-twitch type fibers, such as the mouse soleus, than in muscles in which fast-twitch fibers predominate, such as the mouse extensor digitorum longus. The halothane-cooling contractures are potentiated in muscles exposed to succinylcholine. The effects of Ca2+-free solutions, of the local anesthetics procaine, procainamide, and lidocaine, and of the muscle relaxant dantrolene on the halothane-cooling contractures are consistent with the proposal that the halothane-cooling contractures result from synergistic effects of halothane and low temperature on Ca sequestration by the sarcoplasmic reticulum. Preliminary results from skinned rabbit muscle fibers support this proposal. The halothane concentrations required for the halothane-cooling contractures of isolated frog or mouse muscles are comparable with those observed in serum of patients during general anesthesia. Accordingly, fascicles dissected from muscle biopsies of patients under halothane anesthesia for programmed surgery develop large contractures when rapidly cooled. The amplitude of these halothane-cooling contractures declined with the time of perfusion of the muscle fascicles in vitro with halothane-free physiological solutions. It is suggested that the halothane-cooling contractures could be used as a simple experimental model for the investigation of the effects of halothane on Ca homeostasis and contractility in skeletal muscle and for study of drugs of potential use in the management of the contractures associated with the halothane-induced malignant hyperthermia syndrome. It is shown that salicylates, but not indomethacin or mefenamic acid, inhibit the halothane-cooling contractures.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Kunihiro Sakuma ◽  
Akihiko Yamaguchi

Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.


1989 ◽  
Vol 9 (5) ◽  
pp. 1978-1986
Author(s):  
N J Karin ◽  
Z Kaprielian ◽  
D M Fambrough

cDNA encoding Ca2+-ATPase was cloned from a chicken skeletal muscle library. The cDNA (termed FCa) comprised 3,239 base pairs, including an open reading frame encoding 994 amino acids which showed the highest degree of homology with the adult rabbit fast-twitch Ca2+-ATPase isoform (C. J. Brandl, S. de Leon, D. R. Martin, and D. H. MacLennan, J. Biol. Chem. 262:3768-3774, 1987). Radiolabeled FCa hybridized to a 3.2-kilobase transcript in chicken skeletal muscle RNA but not to cardiac muscle RNA, which confirmed its identity as encoding the fast Ca2+-ATPase isoenzyme. FCa was transfected into the mouse myogenic line C2C12, from which a protein of 100 kilodaltons was immunopurified by using a monoclonal antibody specific for the avian fast Ca2+-ATPase. Immunofluorescence microscopy of a line (designated C2FCa2) stably expressing the avian Ca2+-ATPase localized the protein to the nuclear envelope and a population of cytoplasmic vesicles. A similar pattern was observed when C2FCa2 cells were stained with DiOC6(3), a cyanine dye that labels endoplasmic reticulum and mitochondria (M. Terasaki, J. Song, J. R. Wong, M. J. Weiss, and L. B. Chen, Cell 38:101-108, 1984). We conclude that the avian Ca2+-ATPase fast isoform is expressed and correctly targeted to the endoplasmic reticulum in mouse C2C12 cells.


1996 ◽  
Vol 271 (2) ◽  
pp. E253-E260 ◽  
Author(s):  
C. E. Torgan ◽  
W. E. Kraus

Skeletal muscle exhibits a wide range in functional phenotype in response to changes in physiological demands. We have observed that, in response to changes in work patterns, alterations in gene expression of some proteins coincide with changes in adenylyl cyclase (AC) activity [Kraus, W.E., J.P. Longabaugh, and S. B. Liggett. Am. J. Physiol 263 (Endocrinol. Metab. 26): E266-E230, 1992]. We now examine AC isoform transcript prevalence in various rabbit skeletal muscles and in response to changing work demands. Using reverse transcriptase-polymerase chain reaction, we detected type II AC isoform transcripts in rabbit skeletal muscle. Ribonuclease protection analyses revealed that expression of the type II isoform significantly correlated with the percentage of fast-twitch type IIb/IId fibers (r2 = 0.765, P < 0.01). When a fast-twitch muscle was converted to a slow-twitch muscle via chronic electrical pacing, expression of type II AC mRNA significantly decreased. This response occurred 3 days after the onset of stimulation (78% decrease) and was still present after 21 days of stimulation (76% decrease). As type II AC is relatively insensitive to calcium regulation while sensitive to protein kinase C (PKC) signaling, these data provide further impetus for investigations of protein kinase A and PKC cross-talk signaling mechanisms in the regulation of gene expression.


Sign in / Sign up

Export Citation Format

Share Document