Study of spatial distribution for the active ingredient in ibuprofen tablet based on near-infrared micro-imaging technology

2011 ◽  
Vol 22 (11) ◽  
pp. 1335-1338 ◽  
Author(s):  
Dong Wang ◽  
Yun Sheng Ding ◽  
Jin Li Cao ◽  
Yue He ◽  
Sheng Feng Ye ◽  
...  
LWT ◽  
2021 ◽  
pp. 111737
Author(s):  
Yujie Wang ◽  
Ying Liu ◽  
Yuyu Chen ◽  
Qingqing Cui ◽  
Luqing Li ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 162-163
Author(s):  
EN Lewis ◽  
LH Kidder ◽  
KS Haber

Single point near-infrared (NIR) spectroscopy is used extensively for characterizing raw materials and finished products in a wide variety of industries: polymers, paper, film, pharmaceuticals, paintings and coatings, food and beverages, agricultural products. As advanced industrial materials become more complex, their functionality is often determined by the spatial distribution of their discrete sample constituents. However, conventional single point NIR spectroscopy cannot adequately probe the interrelationship between the spatial distribution of sample components with the physical properties of the sample. to fully characterize these samples, it is necessary to probe simultaneously spatial and chemical heterogeneity and correlate these properties with sample characteristics.Recently, we have developed a novel NIR imaging spectrometer that can deliver spatially resolved chemical information very rapidly. in contrast to conventional, single point NIR spectrometers, the imaging system uses an infrared focal-plane array (FPA) to collect up to 76,800 complete spectra, one for each pixel on the array, in approximately one minute.


2019 ◽  
Vol 296 ◽  
pp. 126630 ◽  
Author(s):  
Pengcheng Nie ◽  
Jinnuo Zhang ◽  
Xuping Feng ◽  
Chenliang Yu ◽  
Yong He

2017 ◽  
Vol 12 (S333) ◽  
pp. 238-241 ◽  
Author(s):  
René Laureijs

AbstractEuclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ≈260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid’s standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.


Sign in / Sign up

Export Citation Format

Share Document