A series of simple curcumin-derived colorimetric and fluorescent probes for ratiometric-pH sensing and cell imaging

Author(s):  
Guangjie Song ◽  
Di Jiang ◽  
Lei Wang ◽  
Xiangzhong Sun ◽  
Hongtian Liu ◽  
...  
2013 ◽  
Vol 34 (6) ◽  
pp. 539-547 ◽  
Author(s):  
Libin Bai ◽  
Wei Li ◽  
Jingtian Chen ◽  
Fuli Bo ◽  
Baoxiang Gao ◽  
...  

2015 ◽  
Vol 51 (28) ◽  
pp. 6145-6148 ◽  
Author(s):  
Robert J. Meier ◽  
Johann M. B. Simbürger ◽  
Tero Soukka ◽  
Michael Schäferling

A FRET system composed of a europium chelate and carboxynaphthofluorescein enables ratiometric pH sensing with an exceptionally broad dynamic range.


2017 ◽  
Vol 241 ◽  
pp. 868-878 ◽  
Author(s):  
Yordkhuan Tachapermpon ◽  
Sumonmarn Chaneam ◽  
Adisri Charoenpanich ◽  
Jitnapa Sirirak ◽  
Nantanit Wanichacheva

2021 ◽  
Author(s):  
Mo Xie ◽  
Linjie Guo ◽  
Shu Xing ◽  
Shuting Cao ◽  
Ziwei Zhao ◽  
...  

FDF-encoded multi-color fluorescent probes incorporating different aptamer motifs for pattern recognition of different cell lines.


Chemosensors ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 40 ◽  
Author(s):  
Ludovic Galas ◽  
Thibault Gallavardin ◽  
Magalie Bénard ◽  
Arnaud Lehner ◽  
Damien Schapman ◽  
...  

Cell Imaging Platforms (CIPs) are research infrastructures offering support to a number of scientific projects including the choice of adapted fluorescent probes for live cell imaging. What to detect in what type of sample and for how long is a major issue with fluorescent probes and, for this, the “hat-trick” “Probe–Sample–Instrument” (PSI) has to be considered. We propose here to deal with key points usually discussed in CIPs including the properties of fluorescent organic probes, the modality of cell labeling, and the best equipment to obtain appropriate spectral, spatial, and temporal resolution. New strategies in organic synthesis and click chemistry for accessing probes with enhanced photophysical characteristics and targeting abilities will also be addressed. Finally, methods for image processing will be described to optimize exploitation of fluorescence signals.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6747
Author(s):  
Beatričė Razmienė ◽  
Eva Řezníčková ◽  
Vaida Dambrauskienė ◽  
Radek Ostruszka ◽  
Martin Kubala ◽  
...  

A library of 2,4,6,7-tetrasubstituted-2H-pyrazolo[4,3-c]pyridines was prepared from easily accessible 1-phenyl-3-(2-phenylethynyl)-1H-pyrazole-4-carbaldehyde via an iodine-mediated electrophilic cyclization of intermediate 4-(azidomethyl)-1-phenyl-3-(phenylethynyl)-1H-pyrazoles to 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridines followed by Suzuki cross-couplings with various boronic acids and alkylation reactions. The compounds were evaluated for their antiproliferative activity against K562, MV4-11, and MCF-7 cancer cell lines. The most potent compounds displayed low micromolar GI50 values. 4-(2,6-Diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol proved to be the most active, induced poly(ADP-ribose) polymerase 1 (PARP-1) cleavage, activated the initiator enzyme of apoptotic cascade caspase 9, induced a fragmentation of microtubule-associated protein 1-light chain 3 (LC3), and reduced the expression levels of proliferating cell nuclear antigen (PCNA). The obtained results suggest a complex action of 4-(2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol that combines antiproliferative effects with the induction of cell death. Moreover, investigations of the fluorescence properties of the final compounds revealed 7-(4-methoxyphenyl)-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine as the most potent pH indicator that enables both fluorescence intensity-based and ratiometric pH sensing.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2923
Author(s):  
Piaopiao Chen ◽  
Iqra Ilyas ◽  
Su He ◽  
Yichen Xing ◽  
Zhigang Jin ◽  
...  

Polymer dots (Pdots) represent newly developed semiconductor polymer nanoparticles and exhibit excellent characteristics as fluorescent probes. To improve the sensitivity and biocompatibility of Pdots ratiometric pH biosensors, we synthesized 3 types of water-soluble Pdots: Pdots-PF, Pdots-PP, and Pdots-PPF by different combinations of fluorescent dyes poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), poly[(9,9-dioctyl-fluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadazole)] (PFBT), and fluorescein isothiocyanate (FITC). We found that Pdots-PPF exhibits optimal performance on pH sensing. PFO and FITC in Pdots-PPF produce pH-insensitive (λ = 439 nm) and pH-sensitive (λ = 517 nm) fluorescence respectively upon a single excitation at 380 nm wavelength, which enables Pdots-PPF ratiometric pH sensing ability. Förster resonance energy transfer (FRET) together with the use of PFBT amplify the FITC signal, which enables Pdots-PPF robust sensitivity to pH. The emission intensity ratio (I517/I439) of Pdots-PPF changes linearly as a function of pH within the range of pH 3.0 to 8.0. Pdots-PPF also possesses desirable reversibility and stability in pH measurement. More importantly, Pdots-PPF was successfully used for cell imaging in Hela cells, exhibiting effective cellular uptake and low cytotoxicity. Our study suggests the promising potential of Pdots-PPF as an in vivo biomarker.


Sign in / Sign up

Export Citation Format

Share Document