Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels

2022 ◽  
Vol 455 ◽  
pp. 214368
Author(s):  
Sina Shahi ◽  
Hossein Roghani-Mamaqani ◽  
Saeid Talebi ◽  
Hanieh Mardani
2020 ◽  
Author(s):  
Shubham Deolka ◽  
Orestes Rivada Wheelaghan ◽  
Sandra Aristizábal ◽  
Robert Fayzullin ◽  
Shrinwantu Pal ◽  
...  

We report selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the role of Cu center acts as a binding site for alkyne substrate, while activating its terminal C-H bond.


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2018 ◽  
Author(s):  
Lucie Nurdin ◽  
Denis M. Spasyuk ◽  
Laura Fairburn ◽  
Warren Piers ◽  
Laurent Maron

Diprotonation of a remarkably stable, toluene soluble cobalt peroxo complex supported by a neutral, dianionic pentadentate ligand leads to facile O-O bond cleavage and production of a highly reactive Co(IV) oxyl cation intermediate that dimerizes and releases O<sub>2</sub>. These processes are relevant to both O<sub>2</sub> reduction and O<sub>2</sub> evolution and the mechanism was probed in detail both experimentally and computationally.


2019 ◽  
Author(s):  
Katsutoshi Sato ◽  
Shin-ichiro Miyahara ◽  
Yuta Ogura ◽  
Kotoko Tsujimaru ◽  
Yuichiro Wada ◽  
...  

<p>To mitigate global problems related to energy and global warming, it is helpful to develop an ammonia synthesis process using catalysts that are highly active under mild conditions. Here we show that the ammonia synthesis activity of Ru/Ba/LaCeO<i><sub>x</sub></i> pre-reduced at 700 °C is the highest reported among oxide-supported Ru catalysts. Our results indicate that low crystalline oxygen-deficient composite oxides, which include Ba<sup>2+</sup>, Ce<sup>3+</sup> and La<sup>3+</sup>, with strong electron-donating ability, accumulate on Ru particles and thus promote N≡N bond cleavage, which is the rate determining step for ammonia synthesis.</p>


2019 ◽  
Author(s):  
Katsutoshi Sato ◽  
Shin-ichiro Miyahara ◽  
Yuta Ogura ◽  
Kotoko Tsujimaru ◽  
Yuichiro Wada ◽  
...  

<p>To mitigate global problems related to energy and global warming, it is helpful to develop an ammonia synthesis process using catalysts that are highly active under mild conditions. Here we show that the ammonia synthesis activity of Ru/Ba/LaCeO<i><sub>x</sub></i> pre-reduced at 700 °C is the highest reported among oxide-supported Ru catalysts. Our results indicate that low crystalline oxygen-deficient composite oxides, which include Ba<sup>2+</sup>, Ce<sup>3+</sup> and La<sup>3+</sup>, with strong electron-donating ability, accumulate on Ru particles and thus promote N≡N bond cleavage, which is the rate determining step for ammonia synthesis.</p>


2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


2020 ◽  
Vol 24 (18) ◽  
pp. 2181-2191
Author(s):  
Li Wang ◽  
Ziyi Li ◽  
Jiang Liu ◽  
Jianlin Han ◽  
Hiroki Moriwaki ◽  
...  

The development of an efficient and mild synthetic methodology for the construction of bioactive fluorine-containing molecules represents one of the hot research topics in general synthetic organic chemistry. In this review, some recent progresses achieved in the development of detrifluoroacetylatively generated mono-fluorinated enolates via CC bond cleavage and their asymmetric nucleophilic reactions for assembly of chiral quaternary C-F center containing compounds.


2020 ◽  
Vol 7 (2) ◽  
pp. 226-238
Author(s):  
Petro P. Ony`sko ◽  
Tetyana I. Chudakova ◽  
Vladimir V. Pirozhenko ◽  
Alexandr B. Rozhenko

The potentialities of condensation of α-ketophosphonates with primary amines for direct synthesis of α-iminophosphonates have been revealed. Diesters of α-ketophosphonic acids react with the primary amines by two competitive pathways: with a formation of α-iminophosphonates or a C-P bond cleavage resulting in a hydrogen phosphonate and an acylated amine. In many cases, the latter undesirable pathway is dominant, especially for more nucleophilic alkyl amines. Using metallic salts of α-ketophosphonates avoids the C-P bond cleavage, allowing direct preparation of α-phosphorylated imines by the reaction with primary amines. This strategy provides an atom economy single-stage synthesis of iminophosphonates – precursors of bio relevant phosphorus analogs of α-amino acids. Methyl sodium iminophosphonates, bearing aryl or heteryl substituents at the imino carbon atom exist in solutions at room temperature as an equilibrium mixture of Z- and E-isomers. A configuration of the C=N bond can be controlled by the solvent: changing the aprotic dipolar solvent DMSO-d6 by water or alcohols leads to the change from a predominant Z-isomer to almost an exclusive E-form. In contrast, diesters of the respective iminophosphonates exist in non-protic solvents predominantly in Econfiguration. The solvent effect on E-Z stereochemistry is demonstrated by DFT calculations.


1986 ◽  
Vol 51 (12) ◽  
pp. 2770-2780 ◽  
Author(s):  
Alexandra Drahorádová ◽  
Miroslav Zdražil

The reaction of tetrahydrothiophene in a stream of nitrogen was used to study the relations between dehydrogenation and C-S cleavage reactions on sulphided Co-Mo/Al2O3 catalysts. The course of the reaction was compared for Co-Mo catalysts supported on alumina and activated carbon, for alumina alone as well as for a Pt/C catalyst. The effect of substitution of nitrogen for hydrogen, of the addition of water to the feed, of pre-sulphidation of catalysts and their deactivation by coking on the rate and selectivity of the reaction were also investigated. The results showed that hydrogenation-dehydrogenation and dehydrosulphurization activity of the sulphide catalysts have the same origin. Hydrogen accelerates dehydrosulphurization on the sulphide catalysts by removing sulphur and unsaturated hydrocarbons formed on catalyst surface by C-S bond cleavage reactions.


Sign in / Sign up

Export Citation Format

Share Document