Characterization of Mechanical and Thermal Properties of Glycerol Mixed Oxidized Maize Starch/Polyvinyl alcohol Blend Films.

2020 ◽  
Vol 28 ◽  
pp. 100416
Author(s):  
Vishram D. Hiremani ◽  
Tilak Gasti ◽  
Sarala Sataraddi ◽  
Vinayak N. Vanjeri ◽  
Naganagouda Goudar ◽  
...  
2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2014 ◽  
Vol 343 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Reinaldo Yoshio Morita ◽  
Juliana Regina Kloss ◽  
Ronilson Vasconcelos Barbosa

2018 ◽  
Vol 39 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Naman Jain ◽  
Vinay K. Singh ◽  
Sakshi Chauhan

Abstract The present study focuses on the fabrication and analyses of polyvinyl alcohol (PVA) based films blended with polymers, such as starch and protein. The aim is to improve the moisture absorption, solubility, mechanical and thermal properties of PVA by blending it with various polymers. The thermal cross-linking of the films has been studied by heating the films at 120°C for 4 h. The result shows that PVA was completely soluble in water, while post-blending solubility and moisture absorption of blended films decreased. The tensile strength of blended films was significantly higher (4%–29%) as compared to neat PVA, while thermally cross-linked films showed much higher strength (8%–174%). Blended films were characterized using Fourier transform infrared spectroscopy (FTIR) to confirm the formation of hydrogen bonds. Thermogravimetric analysis showed the increase in degradation temperature post-blending as compared to neat PVA. The viscoelastic behavior of the material as well as glass transition temperature was studied using dynamic mechanical analysis. Creep and recovery behavior were examined to study the effect of stress and temperature on creep strain. The biodegradability of the blended films was increased post-blending. This study showed that PVA based blend films can replace non-biodegradable plastics and hence are necessary for the development of environmentally friendly materials.


2014 ◽  
Vol 215 (8) ◽  
pp. 716-724 ◽  
Author(s):  
Jenny Bandomir ◽  
André Schulz ◽  
Satomi Taguchi ◽  
Lena Schmitt ◽  
Hiroyuki Ohno ◽  
...  

2020 ◽  
Vol 95 ◽  
pp. 103083
Author(s):  
Welday Hailu Teklehaimanot ◽  
Suprakas Sinha Ray ◽  
M. Naushad Emmambux
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document