Carbo-Iron®—Synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment

2012 ◽  
Vol 191 ◽  
pp. 588-595 ◽  
Author(s):  
Steffen Bleyl ◽  
Frank-Dieter Kopinke ◽  
Katrin Mackenzie
2021 ◽  
pp. 125995
Author(s):  
So Yeon Yoon ◽  
Seok Byum Jang ◽  
Kien Tiek Wong ◽  
Hyeseong Kim ◽  
Min Ji Kim ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


2018 ◽  
Vol 249 ◽  
pp. 125-131 ◽  
Author(s):  
M. Farooq ◽  
M.N. Almustapha ◽  
M. Imran ◽  
M.A. Saeed ◽  
John M. Andresen

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zatil Amali Che Ramli ◽  
Nilofar Asim ◽  
Wan N. R. W. Isahak ◽  
Zeynab Emdadi ◽  
Norasikin Ahmad-Ludin ◽  
...  

This study involves the investigation of altering the photocatalytic activity of TiO2using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2(179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.


Sign in / Sign up

Export Citation Format

Share Document