A study on kinetics of NO absorption from flue gas by using UV/Fenton wet scrubbing

2012 ◽  
Vol 197 ◽  
pp. 468-474 ◽  
Author(s):  
Yangxian Liu ◽  
Jun Zhang ◽  
Zhuliang Wang
RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 18821-18829 ◽  
Author(s):  
Zhitao Han ◽  
Shaolong Yang ◽  
Dongsheng Zhao ◽  
Bojun Liu ◽  
Xinxiang Pan ◽  
...  

The mass transfer-reaction kinetics of NO absorption by wet scrubbing using electrolyzed seawater was studied in a bench-scale bubbling reactor.


2015 ◽  
Vol 48 (3) ◽  
pp. 827-835 ◽  
Author(s):  
Mingliang Tang ◽  
Xuerun Li ◽  
Yusheng Shen ◽  
Xiaodong Shen

Modeling of the kinetics of the synthesis process for calcium sulfate α-hemihydrate from gypsum formed by flue gas desulfurization (FGD) is important to produce high-performance products with minimal costs and production cycles under hydrothermal conditions. In this study, a model was established by horizontally translating the obtained crystal size distribution (CSD) to the CSD of the stable phase during the transformation process. A simple method was used to obtain the nucleation and growth rates. A nonlinear optimization algorithm method was employed to determine the kinetic parameters. The model can be successfully used to analyze the transformation kinetics of FGD gypsum to α-hemihydrate in an isothermal batch crystallizer. The results showed that the transformation temperature and stirring speed exhibit a significant influence on the crystal growth and nucleation rates of α-hemihydrate, thus altering the transformation time and CSD of the final products. The characteristics obtained by the proposed model can potentially be used in the production of α-hemihydrate.


Author(s):  
Anton Petukhov ◽  
Artem Atlaskin ◽  
Maria Sergeeva ◽  
Sergey Kryuchkov ◽  
Dmitry Shablykin ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Pandey ◽  
Daas ◽  
Solms

In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.


Fuel ◽  
2013 ◽  
Vol 108 ◽  
pp. 254-260 ◽  
Author(s):  
Yangxian Liu ◽  
Jianfeng Pan ◽  
Aikun Tang ◽  
Qian Wang

2012 ◽  
Vol 33 (3) ◽  
pp. 345-358 ◽  
Author(s):  
Maciej P. Jakubiak ◽  

Abstract The paper presents results of experimental studies on removal of NOx from flue gas via NO ozonation and wet scrubbing of products of NO oxidation in NaOH solutions. The experiment was conducted in a pilot plant installation supplied with flue gas from a coal-fired boiler at the flow rate 200 m3/h. The initial mole fraction of NOx,ref in flue gas was approx. 220 ppm, the molar ratio X = O3/NOref varied between 0 and 2.5. Ozone (O3 content 1÷5% in oxygen) was injected into the flue gas channel before the wet scrubber. The effect of the mole ratio X, the NaOH concentration in the absorbent, the liquid-to-gas ratio (L/G) and the initial NOx concentration on the efficiency of NOx removal was examined. Two domains of the molar ratio X were distinguished in which denitrification was governed by different mechanisms: for X ≤ 1.0 oxidation of NO to NO2 predominates with slow absorption of NO2, for X >> 1.0 NO2 undergoes further oxidation to higher oxides being efficiently absorbed in the scrubber. At the stoichiometric conditions (X = 1) the effectiveness of NO oxidation was better than 90%. However, the effectiveness of NOx removal reached only 25%. When ozonation was intensified (X ≥ 2.25) about 95% of NOx was removed from flue gas. The concentration of sodium hydroxide in the aqueous solution and the liquid-to-gas ratio in the absorber had little effect on the effectiveness of NOx removal for X > 2.


Sign in / Sign up

Export Citation Format

Share Document