Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands

2015 ◽  
Vol 275 ◽  
pp. 198-205 ◽  
Author(s):  
Tang Xiaoyan ◽  
Wang Suyu ◽  
Yang Yang ◽  
Tao Ran ◽  
Dai Yunv ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6966
Author(s):  
Daniel Wolecki ◽  
Barbara Trella ◽  
Fei Qi ◽  
Piotr Stepnowski ◽  
Jolanta Kumirska

Phthalic acid esters (PAEs) have a negative impact on living organisms in the environment, therefore, are among the group of Endocrine Disrupting Compounds (ECDs). Unfortunately, conventional methods used in municipal wastewater treatment plants (MWWTPs) are not designed to eliminate PAEs. For this reason, the development of cheap and simple but very effective techniques for the removal of such residues from wastewater is crucial. The main aim of this study was the evaluation of the removal of six selected PAEs: diethyl phthalate (DEP), di-n-octyl phthalate (DOP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP) and dimethyl phthalate (DMP), in real MWWTPs supported by constructed wetlands (MWWTP–CW system). For the first time, the possibility of using three new plants for this purpose, Cyperus papyrus (papyrus), Lysimachia nemorum (yellow pimpernel) and Euonymus europaeus (European spindle), has been presented. For determining the target PAEs in wastewater samples, a method of SPE (Solid-Phase Extraction)–GC–MS(SIM) was developed and validated, and for plant materials, a method of UAE (Ultrasound-Assisted Extraction)–SPE–GC–MS(SIM) was proposed. The obtained data showed that the application of the MWWTP–CW system allows a significant increase in the removal of DEP, DBP, BBP and DEHP from the wastewater stream. Euonymus europaeus was the most effective among the tested plant species for the uptake of analytes (8938 ng × g−1 dry weight), thus, this plant was found to be optimal for supporting conventional MWWTPs.


2013 ◽  
Vol 30 (7) ◽  
pp. 647-653 ◽  
Author(s):  
Ying LAI ◽  
Zongping HUANG ◽  
Xiuxiu GE ◽  
Rui LIN ◽  
Hexiu CHEN

1998 ◽  
Vol 38 (2) ◽  
pp. 185-192 ◽  
Author(s):  
M. J. Bauer ◽  
R. Herrmann ◽  
A. Martin ◽  
H. Zellmann

Large amounts of phthalic acid esters (PAEs) are leached from plastics dumped at municipal landfills. This leachate transports PAEs either adsorbed on particulate matter or in dissolved phase. Dissolved organic macromolecules, mainly humic-like substances, enhance the solubility of PAEs. In the biochemical environments of municipal landfills short chain PAEs can be degraded by base-catalyzed hydrolysis or by microorganisms which enzymatically split the side chains. However, there is no cleavage of the aromatic ring. Long chain PAEs like di-(2-ethylhexyl) phthalate are neither degraded abiotically nor by microorganisms. Hence, these PAEs can be leached and washed out of leaky landfills into the groundwater and thus continue to be a threat to the aquatic environment. Only a combined UV radiation/ozonation treatment is capable of fully destroying PAEs.


1986 ◽  
Vol 65 ◽  
pp. 263 ◽  
Author(s):  
Barry J. Phillips ◽  
Diana Anderson ◽  
Sharat D. Gangolli

Sign in / Sign up

Export Citation Format

Share Document