scholarly journals Experimental validation of a mathematical model for the evolution of the particle morphology of waterborne polymer-polymer hybrids: Paving the way to the design and implementation of optimal polymerization strategies

2019 ◽  
Vol 363 ◽  
pp. 259-269 ◽  
Author(s):  
Noushin Rajabalinia ◽  
Shaghayegh Hamzehlou ◽  
Jose R. Leiza ◽  
José M. Asua
2017 ◽  
Vol 12 (6) ◽  
Author(s):  
Auni Aslah Mat Daud

A Galton board is an instrument invented in 1873 by Francis Galton (1822–1911). It is a box with a glass front and many horizontal nails or pins embedded in the back and a funnel. Galton and many modern statisticians claimed that a lead ball descending to the bottom of the Galton board would display random walk. In this study, a new mathematical model of Galton board is developed, to further improve three very recently proposed models. The novel contribution of this paper is the introduction of the velocity-dependent coefficient of restitution. The developed model is then analyzed using symbolic dynamics. The results of the symbolic dynamics analysis prove that the developed Galton board model does not behave the way Galton envisaged.


2016 ◽  
Vol 63 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Joseph William Thompson ◽  
William O’Connor

Abstract Wave-Based Control has been previously applied successfully to simple under-actuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to non-uniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion) is required.


2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 646
Author(s):  
Pietro Tedeschi ◽  
Gabriele Oligeri ◽  
Roberto Di Pietro

Jamming is a malicious radio activity that represents a dreadful threat when employed in critical scenarios. Several techniques have been proposed to detect, locate, and mitigate jamming. Similarly, counter-counter-jamming techniques have been devised. This paper belongs to the latter thread. In particular, we propose a new jammer model: a power-modulated jammer that defies standard localization techniques. We provide several contributions: we first define a new mathematical model for the power-modulated jammer and then propose a throughout analysis of the localization error associated with the proposed power-modulated jammer, and we compare it with a standard power-constant jammer. Our results show that a power-modulated jammer can make the localization process completely ineffective—even under conservative assumptions of the shadowing process associated with the radio channel. Indeed, we prove that a constant-power jammer can be localized with high precision, even when coupled with a strong shadowing effect (σ ≈ 6 dBm). On the contrary, our power-modulated jammer, even in the presence of a very weak shadowing effect (σ < 2 dBm), presents a much wider localization error with respect to the constant-power jammer. In addition to being interesting on its own, we believe that our contribution also paves the way for further research in this area.


Sign in / Sign up

Export Citation Format

Share Document