A Study on Exhaust Muffler Using Counter-Phase Counteract

2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.

2011 ◽  
Vol 130-134 ◽  
pp. 41-44
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


Author(s):  
Junta Tagusari ◽  
Sho Sato ◽  
Toshihito Matsui

Low-frequency noise may create specific perceptions, which might cause various health effects. The present study aimed to identify exposure–response relationships between low-frequency noise and perceptions by re-analysing an experimental study. We investigated the predominant perceptions of ‘feeling bothered’ and ‘feeling of pressure and/or vibration’ using multivariate logistic regression analysis. A significant interaction between 1/3 octave-band sound pressure level and frequency was indicated for ‘feeling bothered’ but not ‘feeling of pressure and/or vibration’, suggesting that the ‘feeling of pressure and/or vibration’ does not originate in cochlear. A mathematical model indicating resonance at approximately 50 Hz fitted the results well. A frequency weighting derived from the mathematical model could be applied to broad-band low-frequency noise to evaluate the perception and health effects. However, further investigations on the weighting for the perception are necessary because the results were obtained only from the existing study.


2020 ◽  
Vol 19 (3-5) ◽  
pp. 191-206
Author(s):  
Trae L Jennette ◽  
Krish K Ahuja

This paper deals with the topic of upper surface blowing noise. Using a model-scale rectangular nozzle of an aspect ratio of 10 and a sharp trailing edge, detailed noise contours were acquired with and without a subsonic jet blowing over a flat surface to determine the noise source location as a function of frequency. Additionally, velocity scaling of the upper surface blowing noise was carried out. It was found that the upper surface blowing increases the noise significantly. This is a result of both the trailing edge noise and turbulence downstream of the trailing edge, referred to as wake noise in the paper. It was found that low-frequency noise with a peak Strouhal number of 0.02 originates from the trailing edge whereas the high-frequency noise with the peak in the vicinity of Strouhal number of 0.2 originates near the nozzle exit. Low frequency (low Strouhal number) follows a velocity scaling corresponding to a dipole source where as the high Strouhal numbers as quadrupole sources. The culmination of these two effects is a cardioid-shaped directivity pattern. On the shielded side, the most dominant noise sources were at the trailing edge and in the near wake. The trailing edge mounting geometry also created anomalous acoustic diffraction indicating that not only is the geometry of the edge itself important, but also all geometry near the trailing edge.


2019 ◽  
Vol 27 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Seongkyu Lee

This paper investigates the effect of airfoil shape on trailing edge noise. The boundary layer profiles are obtained by XFOIL and the trailing edge noise is predicted by a TNO semi-empirical model. In order to investigate the noise source characteristics, the wall pressure spectrum is decomposed into three components. This decomposition helps in finding the dominant source region and the peak noise frequency for each airfoil. The method is validated for a NACA0012 airfoil, and then five additional wind turbine airfoils are examined: NACA0018, DU96-w-180, S809, S822 and S831. It is found that the dominant source region is around 40% of the boundary layer thickness for both the suction and pressure sides for a NACA0012 airfoil. As airfoil thickness and camber increase, the maximum source region moves slightly upward on the suction side. However, the effect of the airfoil shape on the maximum source region on the pressure side is negligible, except for the S831 airfoil, which exhibits an extension of the noise source region near the wall at high frequencies. As airfoil thickness and camber increase, low frequency noise is increased. However, a higher camber reduces low frequency noise on the pressure side. The maximum camber position is also found to be important and its rear position increases noise levels on the suction side.


Author(s):  
R. Caracciolo ◽  
A. Gasparetto ◽  
A. Trevisani

Abstract This paper presents an experimental validation of a finite element approach for the dynamic analysis of flexible multi-body planar mechanisms. The mathematical model employed accounts for mechanism geometric and inertial non-linearities and considers coupling effects among rigid-body and elastic motion. A flexible five-bar linkage actuated by two electric motors is employed as a test case. Experimentally determined link absolute deformations are compared with the numerical results obtained simulating the system dynamic behavior through the mathematical model. The experimental and numerical results are in good agreement especially after the very first transient period.


2020 ◽  
Vol 59 (37) ◽  
pp. 16136-16145
Author(s):  
Jaime Dueñas Moreno ◽  
Tatyana Poznyak ◽  
Julia Liliana Rodríguez ◽  
Isaac Chairez ◽  
Hector J. Dorantes-Rosales

2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879481 ◽  
Author(s):  
Enbin Liu ◽  
Shanbi Peng ◽  
Tiaowei Yang

When a natural gas transmission and distribution station performs a planned or emergency venting operation, the jet noise produced by the natural gas venting pipe can have an intensity as high as 110 dB, thereby severely affecting the production and living environment. Jet noise produced by venting pipes is a type of aerodynamic noise. This study investigates the mechanism that produces the jet noise and the radiative characteristics of jet noise using a computational fluid dynamics method that combines large eddy simulation with the Ffowcs Williams–Hawkings acoustic analogy theory. The analysis results show that the sound pressure level of jet noise is relatively high, with a maximum level of 115 dB in the low-frequency range (0–1000 Hz), and the sound pressure level is approximately the average level in the frequency range of 1000–4000 Hz. In addition, the maximum and average sound pressure levels of the noise at the same monitoring point both slightly decrease, and the frequency of the occurrence of a maximum sound pressure level decreases as the Mach number at the outlet of the venting pipe increases. An increase in the flow rate can result in a shift from low-frequency to high-frequency noise. Subsequently, this study includes a design of an expansion-chamber muffler that reduces the jet noise produced by venting pipes and an analysis of its effectiveness in reducing noise. The results show that the expansion-chamber muffler designed in this study can effectively reduce jet noise by 10–40 dB and, thus, achieve effective noise prevention and control.


Sign in / Sign up

Export Citation Format

Share Document