Impact of computational domain discretization and gradient limiters on CFD results concerning liquid mixing in a helical pipe

2020 ◽  
Vol 383 ◽  
pp. 123121 ◽  
Author(s):  
Michael Mansour ◽  
Prafull Khot ◽  
Péter Kováts ◽  
Dominique Thévenin ◽  
Katharina Zähringer ◽  
...  
2019 ◽  
Vol 57 (4) ◽  
pp. 833-842 ◽  
Author(s):  
Marcin Sosnowski ◽  
Renata Gnatowska ◽  
Jacek Sobczyk ◽  
Waldemar Wodziak

2018 ◽  
Vol 180 ◽  
pp. 02095 ◽  
Author(s):  
Marcin Sosnowski

The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.


2019 ◽  
Vol 9 (5) ◽  
pp. 941 ◽  
Author(s):  
Marcin Sosnowski ◽  
Renata Gnatowska ◽  
Karolina Grabowska ◽  
Jarosław Krzywański ◽  
Arkadiusz Jamrozik

The progress in environmental investigations such as the analysis of building arrangements in an urban environment could not have been expanded without the use of computational fluid dynamics (CFD) as a research tool. The rapid development of numerical models results in improved correlations to results obtained with real data. Unfortunately, the computational domain discretization is a crucial step in CFD analysis which significantly influences the accuracy of the generated results. Hence an innovative approach to computational domain discretization using polyhedral elements is proposed. The results are compared to commonly applied tetrahedral and hexahedral elements as well as experimental results of particle image velocimetry (PIV). The performed research proves that the proposed method is promising as it allows for the reduction of both the numerical diffusion of the mesh as well as the time cost of preparing the model for calculation. In consequence, the presented approach allows for better results in less time.


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


Sign in / Sign up

Export Citation Format

Share Document