2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination

2021 ◽  
Vol 406 ◽  
pp. 126827
Author(s):  
Shoaib Anwer ◽  
D.H. Anjum ◽  
Shaohong Luo ◽  
Yawar Abbas ◽  
Baosong Li ◽  
...  
Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


2019 ◽  
Vol 139 (2) ◽  
pp. 130-135
Author(s):  
Masanobu Yoshida ◽  
Yoshinori Konishi ◽  
Masamichi Kato

MRS Advances ◽  
2020 ◽  
Vol 5 (52-53) ◽  
pp. 2669-2678
Author(s):  
Jeovani González P. ◽  
Ramiro Escudero G

AbstractDeinking of recycled office (MOW) paper was carried out by using a flotation column and adding separately sodium hydroxide, and the enzyme Cellulase Thricodema Sp., as defibrillators.The de-inked cellulose fibers were characterized according to the standards of the paper industry, to compare the efficiency of the deinking of each chemical reagent used to hydrolyze the fibers and defibrillate them.The computational simulation of the molecular coupling between the enzyme and cellulose was performed, to establish the enzyme-cellulose molecular complex and then to identify the principal amino-acids of endo-β-1,4-D-glucanase in this molecular link, which are responsible for the hydrolysis of the cellulose.Experimental results show the feasibility to replace sodium hydroxide with the enzyme Cellulase Thricodema Sp., by obtaining deinked cellulose with similar optical and physical properties.The use of the enzyme instead of sodium hydroxide avoids the contamination of the residual water; in addition to that, the column is operated more easily, taking into consideration that the pH of the system goes from alkaline to neutral.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2020 ◽  
Author(s):  
Eyal Wormser ◽  
Oded Nir ◽  
Eran Edri

<div> <div> <div> <p>The desalination of brackish water provides water to tens of millions of people around the world, but current technologies deplete much needed nutrients from the water, which is detrimental to both public health and agriculture. A selective method for brackish water desalination, which retains the needed nutrients, is electrodialysis (ED) using monovalent-selective cation exchange membranes (MVS-CEMs). However, due to the trade-off between membrane selectivity and resistance, most MVS-CEMs demonstrate either high transport resistance or low selectivity, which increase energy consumption and hinder the use of such membranes for brackish water desalination by ED. Here, we used molecular layer deposition (MLD) to uniformly coat CEMs with ultrathin layers of alucone. The positive surface charge of the alucone instills monovalent selectivity in the CEM. Using MLD enabled us to precisely control and minimize the selective layer thickness, while the flexibility and nanoporosity of the alucone prevent cracking and delamination. Under conditions simulating brackish water desalination, this compound provides monovalent selectivity with negligible added resistance—the smallest reported resistance for a monovalent-selective layer, to date—thereby alleviating the selectivity–resistance trade-off. Addressing the water–energy nexus, we show that using these membranes in ED will cut at least half of the energy required for selective brackish water desalination with current MVS-CEMs. </p> </div> </div> </div>


ACS Omega ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 6826-6847 ◽  
Author(s):  
Asieh Sadat Kazemi ◽  
Ali Akbar Noroozi ◽  
Anousha Khamsavi ◽  
Ali Mazaheri ◽  
Seiyed Mossa Hosseini ◽  
...  

2019 ◽  
Vol 2 (12) ◽  
pp. 5653-5662 ◽  
Author(s):  
Stephen Williams ◽  
Chigozie L. Okolie ◽  
Jay Deshmukh ◽  
Lindsay Hawco ◽  
James McNeil ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Sign in / Sign up

Export Citation Format

Share Document