Elemental sulfur-driven autotrophic denitrification for advanced nitrogen removal from mature landfill leachate after PN/A pretreatment

2021 ◽  
Vol 410 ◽  
pp. 128256
Author(s):  
Chujun Zeng ◽  
Qingxian Su ◽  
Liyu Peng ◽  
Lianpeng Sun ◽  
Qing Zhao ◽  
...  
2019 ◽  
Vol 149 ◽  
pp. 1-10 ◽  
Author(s):  
Huosheng Li ◽  
Shaoqi Zhou ◽  
Yujie Qin ◽  
Jianyou Long ◽  
Fanson Zheng ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3240
Author(s):  
Jinfeng Jiang ◽  
Liang Ma ◽  
Lianjie Hao ◽  
Daoji Wu ◽  
Kai Wang

In order to achieve advanced nitrogen removal from landfill leachate without the addition of external carbon sources, a Sequencing Batch Reactor (SBR) and a Sequencing Biofilm Batch Reactor (SBBR) were proposed for the treatment of actual landfill leachate with ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentrations of 1000 ± 100 mg/L and 4000 ± 100 mg/L, respectively. The operating modes of both systems are anaerobic–aerobic–anoxic. After 110 days of start-up and biomass acclimation, the effluent COD and the total nitrogen (TN) of the two systems were 650 ± 50 mg/L and 20 ± 10 mg/L, respectively. The removal rates of COD and total nitrogen could reach around 85% and above 95%, respectively. Therefore, advanced nitrogen removal was implemented in landfill leachate without adding any carbon sources. After the two systems were acclimated, nitrogen removing cycles of SBR and SBBR were 24 h and 20 h, respectively. The nitrogen removing efficiency of SBBR was improved by 16.7% in comparison to SBR. In the typical cycle of the two groups of reactors, the nitrification time of the system was the same, which was 5.5 h, indicating that although the fiber filler occupied part of the reactor space, it had no significant impact on the nitrification performance of the system. At the end of aeration, the internal carbon source content of sludge of SBBR was equivalent to that of the SBR system. However, the total nitrogen concentration of SBBR was only 129 mg/L, which is 33.8% lower than that of SBR at 195 mg/L. The main reason was that biofilm enhanced the simultaneous nitrification and denitrification (SND) effect of the system.


2011 ◽  
Vol 365 ◽  
pp. 155-159
Author(s):  
Xuan Bai ◽  
Xiao Min Hu ◽  
Ming Jun Shan ◽  
Da Wei Pan ◽  
Yan Qiu Wang ◽  
...  

An energy saving processes was developed on the treatment of mature landfill leachate. The process adopted biochemical and physicochemical process to deal with COD and NH3-N which were the main pollutant indexes according to the characteristics of mature landfill. The experimental wastewater was from leachate pond of Anshan Yang’eryu landfill. The principle and course of simultaneous nitrogen removal and degradation of organic pollutants were elucidated. For the treated landfill leachate by the process, COD and TN removal rates reached over 95% and 65%, respectively, reaching the first class standard of “Sewage Comprehensive Discharging Standard”(GB8978-1996) for china.


Sign in / Sign up

Export Citation Format

Share Document