Critical role of nanocomposites at air–water interface: From aqueous foams to foam-based lightweight functional materials

2021 ◽  
Vol 416 ◽  
pp. 129121
Author(s):  
Kai Yu ◽  
Bin Li ◽  
Huagui Zhang ◽  
Zhentao Wang ◽  
Wei Zhang ◽  
...  
1997 ◽  
Vol 488 ◽  
Author(s):  
Anantharaman Dhanabalan ◽  
Débora Balogh ◽  
Carlos José Leopoldo Constantino ◽  
Antonio Riul ◽  
Osvaldo N. Oliveira ◽  
...  

AbstractWe report on the organization of different disperse red dye derivatized methacrylate homo- and copolymers as Langmuir monolayers at the air-water interface. The monolayers were investigated using surface pressure and surface potential isotherms. Methacrylic homopolymers containing disperse red-1 (HPDR1) and disperse red-13 (HPDR13) and methacrylic copolymers with different mole percentages of the dye and hydroxyethyl spacer groups were synthesized and characterized. A comparison of the monolayer characteristics of HPDR1 and HPDR13 revealed the influence of the chlorine substitution in the aromatic ring of the dye. Studies with copolymers indicated a clear transition in the monolayer behavior with the change of mole percentage of the dye incorporated in the polymer. While copolymers with low dye content (up to about 5 mole%) presented an expanded monolayer, the copolymers containing higher dye content (12% and above) formed a condensed monolayer similar to that of the homopolymer. These results indicated the critical role of the dye component in the polymer chain in forming the monolayer at the air-water interface.


2009 ◽  
Vol 479 (4-6) ◽  
pp. 173-183 ◽  
Author(s):  
Dominik Horinek ◽  
Alexander Herz ◽  
Lubos Vrbka ◽  
Felix Sedlmeier ◽  
Shavkat I. Mamatkulov ◽  
...  

2018 ◽  
Vol 115 (13) ◽  
pp. 3255-3260 ◽  
Author(s):  
Xinxing Zhang ◽  
Kevin M. Barraza ◽  
J. L. Beauchamp

The role of cholesterol in bilayer and monolayer lipid membranes has been of great interest. On the biophysical front, cholesterol significantly increases the order of the lipid packing, lowers the membrane permeability, and maintains membrane fluidity by forming liquid-ordered–phase lipid rafts. However, direct observation of any influence on membrane chemistry related to these cholesterol-induced physical properties has been absent. Here we report that the addition of 30 mol % cholesterol to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) monolayers at the air–water interface greatly reduces the oxidation and ester linkage cleavage chemistries initiated by potent chemicals such as OH radicals and HCl vapor, respectively. These results shed light on the indispensable chemoprotective function of cholesterol in lipid membranes. Another significant finding is that OH oxidation of unsaturated lipids generates Criegee intermediate, which is an important radical involved in many atmospheric processes.


Langmuir ◽  
2017 ◽  
Vol 33 (32) ◽  
pp. 7968-7981 ◽  
Author(s):  
Christine Picard ◽  
Patrick Garrigue ◽  
Marie-Charlotte Tatry ◽  
Véronique Lapeyre ◽  
Serge Ravaine ◽  
...  

Langmuir ◽  
1997 ◽  
Vol 13 (20) ◽  
pp. 5440-5446 ◽  
Author(s):  
P. Ganguly ◽  
D. V. Paranjape ◽  
K. R. Patil ◽  
Murali Sastry ◽  
F. Rondelez

2020 ◽  
Author(s):  
Suman Samantray ◽  
David Cheung

Using MD simulation the conformation of the fibril forming protein amyloid beta at the air-water interface. It is found that adsorption at the air-water interface induces the formation of aggregation prone alpha-helical conformations, consistent with experimental studies of amyloid beta. Adsorption on the air-water interface also reduces the number of distinct conformations that the protein exhibits. This provides insight into the role of protein conformational change into the enhancement of protein fibrillation at interfaces.


2020 ◽  
Author(s):  
Suman Samantray ◽  
David Cheung

Using MD simulation the conformation of the fibril forming protein amyloid beta at the air-water interface. It is found that adsorption at the air-water interface induces the formation of aggregation prone alpha-helical conformations, consistent with experimental studies of amyloid beta. Adsorption on the air-water interface also reduces the number of distinct conformations that the protein exhibits. This provides insight into the role of protein conformational change into the enhancement of protein fibrillation at interfaces.


1998 ◽  
Vol 64 (1) ◽  
pp. 304-309 ◽  
Author(s):  
Shawn S. Thompson ◽  
Markus Flury ◽  
Marylynn V. Yates ◽  
William A. Jury

ABSTRACT Batch sorption experiments were carried out with the bacteriophages MS2 and φX174. Two types of reactor vessels, polypropylene and glass, were used. Consistently lower concentrations of MS2 were found in the liquid phase in the absence of soil (control blanks) than in the presence of soil after mixing. High levels of MS2 inactivation (∼99.9%) were observed in control tubes made of polypropylene (PP), with comparatively little loss of virus seen in PP tubes when soil was present. Minimal inactivation of MS2 was observed when the air-water interface was completely eliminated from PP control blanks during mixing. All batch experiments performed with reactor tubes made of glass demonstrated no substantial inactivation of MS2. In similar experiments, bacteriophage φX174 did not undergo inactivation in either PP or glass control blanks, implying that this virus is not affected by the same factors which led to inactivation of MS2 in the PP control tubes. When possible, phage adsorption to soil was calculated by the Freundlich isotherm. Our data suggest that forces associated with the air-water-solid interface (where the solid is a hydrophobic surface) are responsible for inactivation of MS2 in the PP control tubes. The influence of air-water interfacial forces should be carefully considered when batch sorption experiments are conducted with certain viruses.


Sign in / Sign up

Export Citation Format

Share Document