Role of the Air-Water-Solid Interface in Bacteriophage Sorption Experiments

1998 ◽  
Vol 64 (1) ◽  
pp. 304-309 ◽  
Author(s):  
Shawn S. Thompson ◽  
Markus Flury ◽  
Marylynn V. Yates ◽  
William A. Jury

ABSTRACT Batch sorption experiments were carried out with the bacteriophages MS2 and φX174. Two types of reactor vessels, polypropylene and glass, were used. Consistently lower concentrations of MS2 were found in the liquid phase in the absence of soil (control blanks) than in the presence of soil after mixing. High levels of MS2 inactivation (∼99.9%) were observed in control tubes made of polypropylene (PP), with comparatively little loss of virus seen in PP tubes when soil was present. Minimal inactivation of MS2 was observed when the air-water interface was completely eliminated from PP control blanks during mixing. All batch experiments performed with reactor tubes made of glass demonstrated no substantial inactivation of MS2. In similar experiments, bacteriophage φX174 did not undergo inactivation in either PP or glass control blanks, implying that this virus is not affected by the same factors which led to inactivation of MS2 in the PP control tubes. When possible, phage adsorption to soil was calculated by the Freundlich isotherm. Our data suggest that forces associated with the air-water-solid interface (where the solid is a hydrophobic surface) are responsible for inactivation of MS2 in the PP control tubes. The influence of air-water interfacial forces should be carefully considered when batch sorption experiments are conducted with certain viruses.

2021 ◽  
Vol 416 ◽  
pp. 129121
Author(s):  
Kai Yu ◽  
Bin Li ◽  
Huagui Zhang ◽  
Zhentao Wang ◽  
Wei Zhang ◽  
...  

2009 ◽  
Vol 479 (4-6) ◽  
pp. 173-183 ◽  
Author(s):  
Dominik Horinek ◽  
Alexander Herz ◽  
Lubos Vrbka ◽  
Felix Sedlmeier ◽  
Shavkat I. Mamatkulov ◽  
...  

2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Rakesh Kumar Harishchandra ◽  
Mohammed Saleem ◽  
Hans-Joachim Galla

One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs.


2018 ◽  
Vol 115 (13) ◽  
pp. 3255-3260 ◽  
Author(s):  
Xinxing Zhang ◽  
Kevin M. Barraza ◽  
J. L. Beauchamp

The role of cholesterol in bilayer and monolayer lipid membranes has been of great interest. On the biophysical front, cholesterol significantly increases the order of the lipid packing, lowers the membrane permeability, and maintains membrane fluidity by forming liquid-ordered–phase lipid rafts. However, direct observation of any influence on membrane chemistry related to these cholesterol-induced physical properties has been absent. Here we report that the addition of 30 mol % cholesterol to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) monolayers at the air–water interface greatly reduces the oxidation and ester linkage cleavage chemistries initiated by potent chemicals such as OH radicals and HCl vapor, respectively. These results shed light on the indispensable chemoprotective function of cholesterol in lipid membranes. Another significant finding is that OH oxidation of unsaturated lipids generates Criegee intermediate, which is an important radical involved in many atmospheric processes.


Langmuir ◽  
2017 ◽  
Vol 33 (32) ◽  
pp. 7968-7981 ◽  
Author(s):  
Christine Picard ◽  
Patrick Garrigue ◽  
Marie-Charlotte Tatry ◽  
Véronique Lapeyre ◽  
Serge Ravaine ◽  
...  

Langmuir ◽  
1997 ◽  
Vol 13 (20) ◽  
pp. 5440-5446 ◽  
Author(s):  
P. Ganguly ◽  
D. V. Paranjape ◽  
K. R. Patil ◽  
Murali Sastry ◽  
F. Rondelez

2020 ◽  
Author(s):  
Suman Samantray ◽  
David Cheung

Using MD simulation the conformation of the fibril forming protein amyloid beta at the air-water interface. It is found that adsorption at the air-water interface induces the formation of aggregation prone alpha-helical conformations, consistent with experimental studies of amyloid beta. Adsorption on the air-water interface also reduces the number of distinct conformations that the protein exhibits. This provides insight into the role of protein conformational change into the enhancement of protein fibrillation at interfaces.


2020 ◽  
Author(s):  
Suman Samantray ◽  
David Cheung

Using MD simulation the conformation of the fibril forming protein amyloid beta at the air-water interface. It is found that adsorption at the air-water interface induces the formation of aggregation prone alpha-helical conformations, consistent with experimental studies of amyloid beta. Adsorption on the air-water interface also reduces the number of distinct conformations that the protein exhibits. This provides insight into the role of protein conformational change into the enhancement of protein fibrillation at interfaces.


Sign in / Sign up

Export Citation Format

Share Document