Designing of 0D/2D Mixed-Dimensional van der Waals Heterojunction over Ultrathin g-C3N4 for High-Performance Flexible Self-Powered Photodetector

2021 ◽  
pp. 129556
Author(s):  
Ye Zhang ◽  
Yiguo Xu ◽  
Jia Guo ◽  
Xiuwen Zhang ◽  
Xinling Liu ◽  
...  
2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


2021 ◽  
Author(s):  
Qixiao Zhao ◽  
Feng Gao ◽  
Hongyu Chen ◽  
Wei Gao ◽  
Mengjia Xia ◽  
...  

A p-Te/n-MoSe2 vdWH polarization-sensitive photodetector with high comprehensive performance is proposed, which would provide an opportunity for constructing a compact monolithic polarization-sensitive imaging system with low energy consumption.


Small ◽  
2021 ◽  
pp. 2100442
Author(s):  
Zhengxun Lai ◽  
You Meng ◽  
Qi Zhu ◽  
Fei Wang ◽  
Xiuming Bu ◽  
...  

Author(s):  
Zenghui Wu ◽  
Guoan Tai ◽  
Runsheng Liu ◽  
Chuang Hou ◽  
Wei Shao ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ting Zhang ◽  
Shibin Li

AbstractIn this manuscript, the inorganic perovskite CsPbI2Br and CsPbIBr2 are investigated as photoactive materials that offer higher stability than the organometal trihalide perovskite materials. The fabrication methods allow anti-solvent processing the CsPbIxBr3−x films, overcoming the poor film quality that always occur in a single-step solution process. The introduced diethyl ether in spin-coating process is demonstrated to be successful, and the effects of the anti-solvent on film quality are studied. The devices fabricated using the methods achieve high-performance, self-powered and the stabilized photodetectors show fast response speed. The results illustrate a great potential of all-inorganic CsPbIxBr3−x perovskites in visible photodetection and provide an effective way to achieve high performance devices with self-powered capability.


2021 ◽  
Vol 9 (14) ◽  
pp. 4799-4807
Author(s):  
Yong Zhang ◽  
Weidong Song

P-CuZnS/n-GaN UV photodetector is prepared by a simple chemical bath deposition, showing excellent self-powered properties, including ultrahigh on/off ratio (3 × 108), fast response speed (0.14/40 ms) and large detectivity of 3 × 1013 Jones.


2021 ◽  
Vol 225 ◽  
pp. 111033
Author(s):  
Nanda Kumar Reddy Nallabala ◽  
Srinivas Godavarthi ◽  
Venkata Krishnaiah Kummara ◽  
Mohan Kumar Kesarla ◽  
C. Yuvaraj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document