Fabrication of cellulose@Mg(OH)2 composite filter via interfacial bonding and its trapping effect for heavy metal ions

2021 ◽  
pp. 130812
Author(s):  
Nian-Dan Zhao ◽  
Yan Wang ◽  
Xiao-Hang Zou ◽  
Wei-Ming Yin ◽  
Xin-Yu Wang ◽  
...  
2021 ◽  
pp. 44-56
Author(s):  
Md. Monjurul Islam ◽  
Md. Shafiqul Islam ◽  
Mohd. Maniruzzaman ◽  
Md. Minhaz-Ul Haque ◽  
Anika Amir Mohana

This study demonstrates a successful processing and utilization of banana rachis cellulose nanocrystals (CNCs) dispersed clay composite filter which is capable of adsorbing dye and heavy metal ions namely Pb(II) and Cr(III) from industrial wastewater. The composite of different compositions was prepared by dispersing the cellulose nanocrystals, obtained by acid hydrolysis of banana rachis fibres, within the tri-ethyl amine treated clay. The CNC and treated clay were characterized by Fourier transform infrared (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses. Industrial wastewater containing a basic yellow2 dye and two heavy metal ions, Pb(II) and Cr(III), was passed through the prepared filters set in a column. The dye and metal ions adsorption capability of the filters were analyzed by determining the dye and metal ions concentration into the water before and after passing through the composite filter. The concentration of dye and metal ions in water was determined by a UV-visible spectrophotometer and an atomic absorption spectrophotometer, respectively. It was found that the dye adsorption capacity of the composite filters was about 50 mg per gram of composite as well as Pb(II) and Cr(III) ions adsorption capacities of the composite filters were ˃10.0 mg and ˃12.4 mg respectively per gram of the composite when CNC content in the composite was ˃30 wt.%. It was also found that the metal ions adsorption capability of the composite filter was improved with increasing CNC content in the composites.


2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


2020 ◽  
Vol 13 ◽  
Author(s):  
Rishabha Malviya ◽  
Pramod Sharma ◽  
Akanksha Sharma

: Manuscript discussed about the role of polysaccharides and their derivatives in the removal of metal ions from industrial waste water. Quick modernization and industrialization increases the amount of various heavy metal ions in the environment. They can possess various disease in humans and also causes drastic environmental hazards. In this review the recent advancement for the adsorption of heavy metal ions from waste water by using different methods has been studied. Various natural polymers and their derivatives are act as effective adsorbents for the removal of heavy metal ions from the waste water released from the industries and the treated water released into the environment can decreases the chances of diseases in humans and environmental hazards. From the literature surveys it was concluded that the removal of heavy metal ions from the industrial waste water was important to decrease the environmental pollution and also diseases caused by the heavy metal ions. Graft copolymers were acts as most efficient adsorbent for the removal of heavy metal ions and most of these followed the pseudo first order and pseudo second order model of kinetics.


Sign in / Sign up

Export Citation Format

Share Document