Droplets Dynamics Theory and Micro-flow Field Experiments of Improving Self-humidifying Feature and Maximum Power Density in Fuel Cells

2021 ◽  
pp. 131974
Author(s):  
Ruofan Zhang ◽  
Bowen Yang ◽  
Xiaozhou Lei ◽  
Pingwen Ming ◽  
Bing Li ◽  
...  
2018 ◽  
Vol 8 (12) ◽  
pp. 2504
Author(s):  
Junxian Shi ◽  
Anhuai Lu ◽  
Haibin Chu ◽  
Hongyu Wu ◽  
Hongrui Ding

Developing simple and cheap electrocatalysts or photocatalysts for cathodes to increase the oxygen reduction process is a key factor for better utilization of microbial fuel cells (MFCs). Here, we report the investigation of natural wolframite employed as a low-cost cathode photocatalyst to improve the performance of MFCs. The semiconducting wolframite was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The band gap and photo respond activities were determined by UV-vis spectroscopy and linear sweep voltammetry (LSV), respectively. Compared with the normal graphite cathode, when MFCs were equipped with a wolframite-coated cathode, the maximum power density was increased from 41.47 mW·m−2 to 95.51 mW·m−2. Notably, the maximum power density further improved to 135.57 mW·m−2 under light irradiation, which was 2.4 times higher than with a graphite cathode. Our research demonstrated that natural wolframite, a low-cost and abundant natural semiconducting mineral, showed promise as an effective photocathode catalyst which has great potential applications related to utilizing natural minerals in MFCs and for environmental remediation by MFCs in the future.


2011 ◽  
Vol 1330 ◽  
Author(s):  
Hiroo Yugami ◽  
Kensuke Kubota ◽  
Yu Inagaki ◽  
Fumitada Iguchi ◽  
Shuji Tanaka ◽  
...  

ABSTRACTMicro-solid oxide fuel cells (Micro-SOFCs) with yttrium-doped barium zirconate (BZY) and strontium and cobalt-doped lanthanum scandate (LSScCo) electrolytes were fabricated for low-temperature operation at 300 °C. The micro-SOFC with a BZY electrolyte could operate at 300 °C with an open circuit voltage (OCV) of 1.08 V and a maximum power density of 2.8 mW/cm2. The micro-SOFC with a LSScCo electrolyte could operate at 370 °C; its OCV was about 0.8 V, and its maximum power density was 0.6 mW/cm2. Electrochemical impedance spectroscopy revealed that the electrolyte resistance in both the micro-SOFCs was lower than 0.1 Ωcm2, and almost all of the resistance was due to anode and cathode reactions. Although the obtained maximum power density was not sufficient for practical applications, improvement of electrodes will make these micro-SOFCs promising candidates for power sources of mobile electronic devices.


2019 ◽  
Vol 28 (30) ◽  
pp. 221-225 ◽  
Author(s):  
Kenji Fukuta ◽  
Hiroshi Inoue ◽  
Yohei Chikashige ◽  
Hiroyuki Yanagi

2019 ◽  
Vol 43 (24) ◽  
pp. 9389-9395 ◽  
Author(s):  
Cuie Zhao ◽  
Jinxiang Li ◽  
Yan Chen ◽  
Jianyu Chen

In this study, nitrogen- and sulfur-codoped graphene (N/S-G) was prepared and used as an efficient metal-free electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs), exhibiting a maximum power density of 1368 mW m−2, relatively higher than that of commercial Pt/C.


2017 ◽  
Vol 5 (30) ◽  
pp. 15879-15890 ◽  
Author(s):  
Siqi Guo ◽  
Jie Sun ◽  
Zhengyan Zhang ◽  
Aokai Sheng ◽  
Ming Gao ◽  
...  

CoB/Ni-foam was directly formed on a Ni-foam substrate using the electroless plating method. A membraneless DBFC with CoB/Ni-foam (7EP) as an anode showed a maximum power density of 230 mW cm−2.


2016 ◽  
Author(s):  
◽  
Dwayne Jensen Reddy

The effectiveness of using a low cost non - platinum (Pt) material for the catalyst layer of a polymer electrolyte fuel cell (PEMFC) was investigated. A test cell and station was developed. Two commercial Pt loaded membrane electrode assemblies (MEA) and one custom MEA were purchased from the Fuelcelletc store. Hydrogen and oxygen were applied to either side of the custom MEA which resulted in an additional sample tested. An aluminium flow field plate with a hole type design was manufactured for the reactants to reach the reaction sites. End plates made from perspex where used to enclose the MEA, flow field plates, and also to provide reactant inlet and outlet connection points. The developed test station consisted of hydrogen and oxygen sources, pressure regulators, mass flow controllers, heating plate, and humidification units. A number of experimental tests were carried out to determine the performance of the test cells. These tests monitored the performance of the test cell under no-load and loaded conditions. The tests were done at 25 °C and 35 °C at a pressure of 0.5 bar and varying hydrogen and oxygen volume flow rates. The no-load test showed that the MEA’s performed best at high reactant flow rates of 95 ml/min for hydrogen and 38 ml/min for oxygen. MEA 1, 2, 3, and 4 achieved an open circuit voltage (OVC) of 0.936, 0.855, 0.486 and 0.34 V respectively. The maximum current density achieved for the MEAs were 0.3816, 0.284, 15x10-6, and 50x10-6 A/cm2. Under loaded conditions the maximum power densities achieved at 25 °C for MEA’s 1, 2, 3, and 4 were 0.05, 0.038, 2.3x10-6, 1.99x10-6 W/cm2 respectively. Increasing the temperature by 10°C for MEA 1, 2, 3, 4 resulted in a 16.6, 22.1, 1.79, 10.47 % increase in the maximum power density. It was found that increasing platinum loading, flow rates, and temperature improved the fuel cell performance. It was also found that the catalytic, stability and adsorption characteristics of silver did not improve when combining it with iridium (Ir) and ruthenium oxide (RuOx) which resulted in low current generation. The low maximum power density thus achieved at a reduced cost is not feasible. Thus further investigation into improving the catalytic requirements of non Pt based catalyst material combinations is required to achieve results comparable to that of a Pt based PEMFC.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50201-50208 ◽  
Author(s):  
Wenbin Hao ◽  
Yongli Mi

A direct carbon fuel cell with a CuO–ZnO–SDC composite anode was demonstrated. The maximum power density was 130 mW cm−2 at 700 °C. The results indicate that CuO–ZnO can be used as a nickel-free anode material for direct carbon fuel cells.


2002 ◽  
Vol 756 ◽  
Author(s):  
Vincenzo Baglio ◽  
Alessandra Di Blasi ◽  
Antonino S. Arico' ◽  
Vincenzo Antonucci ◽  
Pier Luigi Antonucci ◽  
...  

ABSTRACTComposite Nafion membranes containing various amounts of TiO2 (3%, 5% and 10%) were prepared by using a recast procedure for application in high temperature Direct Methanol Fuel Cells (DMFCs). The electrochemical behaviour was compared to that of a membrane-electrode assembly (MEA) based on a bare recast Nafion membrane. All the MEAs containing the Nafion-titania membranes were able to operate up to 145°C, whereas the assembly equipped with the bare recast Nafion membrane showed the maximum performance at 120°C. A maximum power density of 340 mW cm-2 was achieved at 145°C with the composite membrane in the presence of oxygen feed, whereas the maximum power density with air feed was about 210 mW cm-2.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Minwoo Ahn ◽  
Renlong Liu ◽  
Changgu Lee ◽  
Wonyoung Lee

Graphene oxide (GO), which is the oxidized form of graphene, has holes and functional groups on the surface and thus has high potential to be used as an electrochemical transport channel material. In this study, differently modified GO membranes are applied as electrolytes of proton exchange membrane fuel cells (PEMFCs) with controlled carbon/oxygen ratios. The critical and desired properties of the electrolyte, such as electron conductivity, proton conductivity, interfacial reactivity, and cell performance are evaluated in identical platinum-sputtered model electrodes. Among them, with the help of an increased concentration of oxygen-containing groups, a GO membrane with a low carbon/oxygen ratio shows a 2.9-fold improved maximum power density and advanced electrochemical properties compared with the pristine GO membrane. The characterization of GO suggests that the redox state of the membrane is an important factor for controlling the proton conductivity, interfacial reactivity, and maximum power density of PEMFCs.


Sign in / Sign up

Export Citation Format

Share Document