scholarly journals Distinct Role of Long 3′ UTR BDNF mRNA in Spine Morphology and Synaptic Plasticity in Hippocampal Neurons

Cell ◽  
2008 ◽  
Vol 134 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Juan Ji An ◽  
Kusumika Gharami ◽  
Guey-Ying Liao ◽  
Newton H. Woo ◽  
Anthony G. Lau ◽  
...  
Pain ◽  
2011 ◽  
Vol 152 (2) ◽  
pp. 419-427 ◽  
Author(s):  
Ling Zhang ◽  
Temugin Berta ◽  
Zhen-Zhong Xu ◽  
Tong Liu ◽  
Jong Yeon Park ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Norbert Bencsik ◽  
Szilvia Pusztai ◽  
Sándor Borbély ◽  
Anna Fekete ◽  
Metta Dülk ◽  
...  

AbstractCASK-interactive proteins, Caskin1 and Caskin2, are multidomain neuronal scaffold proteins. Recent data from Caskin1 knockout animals indicated only a mild role of Caskin1 in anxiety and pain perception. In this work, we show that deletion of both Caskins leads to severe deficits in novelty recognition and spatial memory. Ultrastructural analyses revealed a reduction in synaptic profiles and dendritic spine areas of CA1 hippocampal pyramidal neurons of double knockout mice. Loss of Caskin proteins impaired LTP induction in hippocampal slices, while miniature EPSCs in dissociated hippocampal cultures appeared to be unaffected. In cultured Caskin knockout hippocampal neurons, overexpressed Caskin1 was enriched in dendritic spine heads and increased the amount of mushroom-shaped dendritic spines. Chemically induced LTP (cLTP) mediated enlargement of spine heads was augmented in the knockout mice and was not influenced by Caskin1. Immunocytochemistry and immunoprecipitation confirmed that Shank2, a master scaffold of the postsynaptic density, and Caskin1 co-localized within the same complex. Phosphorylation of AMPA receptors was specifically altered by Caskin deficiency and was not elevated by cLTP treatment further. Taken together, our results prove a previously unnoticed postsynaptic role of Caskin scaffold proteins and indicate that Caskins influence learning abilities via regulating spine morphology and AMPA receptor localisation.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
João R Gomes ◽  
Andrea Lobo ◽  
Renata Nogueira ◽  
Ana F Terceiro ◽  
Susete Costelha ◽  
...  

Abstract Donnai-Barrow syndrome, a genetic disorder associated to LRP2 (low-density lipoprotein receptor 2/megalin) mutations, is characterized by unexplained neurological symptoms and intellectual deficits. Megalin is a multifunctional endocytic clearance cell-surface receptor, mostly described in epithelial cells. This receptor is also expressed in the CNS, mainly in neurons, being involved in neurite outgrowth and neuroprotective mechanisms. Yet, the mechanisms involved in the regulation of megalin in the CNS are poorly understood. Using transthyretin knockout mice, a megalin ligand, we found that transthyretin positively regulates neuronal megalin levels in different CNS areas, particularly in the hippocampus. Transthyretin is even able to rescue megalin downregulation in transthyretin knockout hippocampal neuronal cultures, in a positive feedback mechanism via megalin. Importantly, transthyretin activates a regulated intracellular proteolysis mechanism of neuronal megalin, producing an intracellular domain, which is translocated to the nucleus, unveiling megalin C-terminal as a potential transcription factor, able to regulate gene expression. We unveil that neuronal megalin reduction affects physiological neuronal activity, leading to decreased neurite number, length and branching, and increasing neuronal susceptibility to a toxic insult. Finally, we unravel a new unexpected role of megalin in synaptic plasticity, by promoting the formation and maturation of dendritic spines, and contributing for the establishment of active synapses, both in in vitro and in vivo hippocampal neurons. Moreover, these structural and synaptic roles of megalin impact on learning and memory mechanisms, since megalin heterozygous mice show hippocampal-related memory and learning deficits in several behaviour tests. Altogether, we unveil a complete novel role of megalin in the physiological neuronal activity, mainly in synaptic plasticity with impact in learning and memory. Importantly, we contribute to disclose the molecular mechanisms underlying the cognitive and intellectual disabilities related to megalin gene pathologies.


2021 ◽  
Vol 22 (17) ◽  
pp. 9303
Author(s):  
Chanchanok Chaichim ◽  
Tamara Tomanic ◽  
Holly Stefen ◽  
Esmeralda Paric ◽  
Lucy Gamaroff ◽  
...  

Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.


Neuroreport ◽  
2004 ◽  
Vol 15 (5) ◽  
pp. 829-832 ◽  
Author(s):  
Yucui Chen ◽  
Jennifer Bourne ◽  
Vincent A. Pieribone ◽  
Reiko Maki Fitzsimonds

2018 ◽  
Vol 51 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Hui Wang ◽  
Shengzhi Tan ◽  
Li Zhao ◽  
Ji Dong ◽  
Binwei Yao ◽  
...  

Background/Aims: The N-methyl-D-aspartic acid receptor (NMDAR) has been extensively studied for its important roles in synaptic plasticity and learning and memory. However, the effects of microwave radiation on the subunit composition and activity of NMDARs and the relationship between NMDARs and microwave-induced synaptic plasticity have not been thoroughly elucidated to date. Materials: In our study, primary hippocampal neurons were used to evaluate the effects of microwave radiation on synaptic plasticity. Structural changes were observed by diolistic (Dil) labeling and scanning electron microscopy (SEM) observation. Functional synaptic plasticity was reflected by the NMDAR currents, which were detected by whole cell patch clamp. We also detected the expression of NMDAR subunits by real-time PCR and Western blot analysis. To clarify the effects of microwave radiation on NMDAR-induced synaptic plasticity, suitable agonists or inhibitors were added to confirm the role of NMDARs on microwave-induced synaptic plasticity. Dil labeling, SEM observation, whole cell patch clamp, real-time PCR and Western blot analysis were used to evaluate changes in synaptic plasticity after treatment with agonists or inhibitors. Results: Our results found that microwave exposure impaired neurite development and decreased mRNA and protein levels and the current density of NMDARs. Due to the decreased expression of NMDAR subunits after microwave exposure, the selective agonist NMDA was added to identify the role of NMDARs on microwave-induced synaptic plasticity injuries. After adding the agonist, the expression of NMDAR subunits recovered to the normal levels. In addition, the microwave-induced structural and functional synaptic plasticity injuries recovered, including the number and length of neurites, the connections between neurons, and the NMDAR current. Conclusion: Microwave radiation caused neuronal synaptic plasticity injuries in primary hippocampal neurons, and NMDARs played protective roles on the damage process.


2010 ◽  
Vol 10 ◽  
pp. 457-461 ◽  
Author(s):  
Shiv K. Sharma

The hepatocyte growth factor (HGF) was initially identified as a protein that promoted growth of hepatocytes. It regulates proliferation and survival of different types of cells. HGF signaling, which is initiated by its binding to a receptor tyrosine kinase, plays critical roles during development. HGF and its receptor are also present in brain cells. This review describes the role of HGF in hippocampal neurons, synaptic plasticity, and the memory impairment condition, Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document