scholarly journals SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function

Cell ◽  
2015 ◽  
Vol 163 (7) ◽  
pp. 1796-1806 ◽  
Author(s):  
Raju Tomer ◽  
Matthew Lovett-Barron ◽  
Isaac Kauvar ◽  
Aaron Andalman ◽  
Vanessa M. Burns ◽  
...  
2013 ◽  
Vol 06 (01) ◽  
pp. 1230002 ◽  
Author(s):  
L. SILVESTRI ◽  
A. L. ALLEGRA MASCARO ◽  
J. LOTTI ◽  
L. SACCONI ◽  
F. S. PAVONE

Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brains with cellular resolution. Moving to living samples, we show how real-time dynamics of brain rewiring can be visualized through two-photon microscopy with the spatial resolution of single synaptic contacts. The plasticity of the injured brain can also be dissected through cutting-edge optical methods that specifically ablate single neuronal processes. Finally, we report how nonlinear microscopy in combination with novel voltage sensitive dyes allow optical registrations of action potential across a population of neurons opening promising prospective in understanding brain functionality. The knowledge acquired from these complementary optical methods may provide a deeper comprehension of the brain and of its unique features.


2021 ◽  
Author(s):  
Hao Liu ◽  
Chitkale Hiremath ◽  
Quinten Patterson ◽  
Saumya Vora ◽  
Zhiguo Shang ◽  
...  

ABSTRACTBackgroundLymphatic abnormalities are observed in several types of kidney disease, but the relationship between the renal lymphatic system and renal function is unclear. The discovery of lymphatic-specific proteins, advances in microscopy, and available genetic mouse models provide the tools to help elucidate the role of renal lymphatics in physiology and disease.MethodsWe utilized a mouse model containing a missense mutation in Vegfr3 (dubbed Chy) that abrogates its kinase ability. Vegfr3Chy/+ mice were examined for developmental abnormalities and kidney-specific outcomes. Control and Vegfr3Chy/+ mice were subjected to cisplatin-mediated injury. We characterized renal lymphatics using a combination of tissue clearing, light-sheet microscopy and computational analyses.ResultsIn the kidney, we found Vegfr3 is expressed not only in lymphatic vessels, but also various blood vessels. Vegfr3Chy/+ mice had severely reduced renal lymphatics with 100% penetrance, but we found no abnormalities in blood pressure, renal function and histology. Similarly, there was no difference in the degree of renal injury after cisplatin, although Vegfr3Chy/+ mice developed more perivascular inflammation by histology. Control mice treated with cisplatin had a measurable increase in cortical lymphatic density despite no change in cortical lymphatic volume and length.ConclusionsWe demonstrate that Vegfr3 is required for development of renal lymphatics, but a reduction in lymphatic density does not alter renal function and induces only modest histological changes after injury. Our data suggests that an increase in lymphatic density after cisplatin injury may reflect the loss of cortical volume associated with chronic kidney disease rather than growth of lymphatic vessels.SIGNIFICANCE STATEMENTDefects in renal lymphatics occur in various kidney diseases, but their role in maintaining kidney structure and function is unknown. We combine tissue clearing, light-sheet microscopy and computational analysis to characterize lymphatics and find that mice with a heterozygous mutation in Vegfr3 (Vegfr3Chy/+) have severely reduced renal lymphatics. Strikingly, these mice have indistinguishable renal function and histology compared with controls. Even after cisplatin injury, there are no differences in renal function, although Vegfr3Chy/+ mice developed more perivascular inflammation. Our data present a novel method of lymphatic quantification and suggest that a normal complement of renal lymphatics is dispensable for renal structure and function.


2021 ◽  
Author(s):  
Joshua L Lillvis ◽  
Hideo Otsuna ◽  
Xiaoyu Ding ◽  
Igor Pisarev ◽  
Takashi Kawase ◽  
...  

Electron microscopy (EM) allows for the reconstruction of dense neuronal connectomes but suffers from low throughput, limiting its application to small numbers of reference specimens. We developed a protocol and analysis pipeline using tissue expansion and lattice light-sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many samples with single synapse resolution and molecular contrast. We validate this approach in Drosophila, demonstrating that it yields synaptic counts similar to those obtained by EM, can be used to compare counts across sex and experience, and to correlate structural connectivity with functional connectivity. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.


2020 ◽  
Vol 26 (4) ◽  
pp. 207-215 ◽  
Author(s):  
Diwakar Turaga ◽  
Oriane B. Matthys ◽  
Tracy A. Hookway ◽  
David A. Joy ◽  
Meredith Calvert ◽  
...  

2004 ◽  
Vol 18 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Jianhua Zhang ◽  
Amy Moseley ◽  
Anil G. Jegga ◽  
Ashima Gupta ◽  
David P. Witte ◽  
...  

To understand the commitment of the genome to nervous system differentiation and function, we sought to compare nervous system gene expression to that of a wide variety of other tissues by gene expression database construction and mining. Gene expression profiles of 10 different adult nervous tissues were compared with that of 72 other tissues. Using ANOVA, we identified 1,361 genes whose expression was higher in the nervous system than other organs and, separately, 600 genes whose expression was at least threefold higher in one or more regions of the nervous system compared with their median expression across all organs. Of the 600 genes, 381 overlapped with the 1,361-gene list. Limited in situ gene expression analysis confirmed that identified genes did represent nervous system-enriched gene expression, and we therefore sought to evaluate the validity and significance of these top-ranked nervous system genes using known gene literature and gene ontology categorization criteria. Diverse functional categories were present in the 381 genes, including genes involved in intracellular signaling, cytoskeleton structure and function, enzymes, RNA metabolism and transcription, membrane proteins, as well as cell differentiation, death, proliferation, and division. We searched existing public sites and identified 110 known genes related to mental retardation, neurological disease, and neurodegeneration. Twenty-one of the 381 genes were within the 110-gene list, compared with a random expectation of 5. This suggests that the 381 genes provide a candidate set for further analyses in neurological and psychiatric disease studies and that as a field, we are as yet, far from a large-scale understanding of the genes that are critical for nervous system structure and function. Together, our data indicate the power of profiling an individual biologic system in a multisystem context to gain insight into the genomic basis of its structure and function.


Sign in / Sign up

Export Citation Format

Share Document