scholarly journals γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation

Cell ◽  
2016 ◽  
Vol 166 (6) ◽  
pp. 1485-1499.e15 ◽  
Author(s):  
Donnele Daley ◽  
Constantinos Pantelis Zambirinis ◽  
Lena Seifert ◽  
Neha Akkad ◽  
Navyatha Mohan ◽  
...  
Cell ◽  
2020 ◽  
Vol 183 (4) ◽  
pp. 1134-1136
Author(s):  
Donnele Daley ◽  
Constantinos Pantelis Zambirinis ◽  
Lena Seifert ◽  
Neha Akkad ◽  
Navyatha Mohan ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

Objective: Both innate (monocyte/macrophages) and adaptive immune cells (T lymphocytes) have been shown to play a role in the development of vascular injury in hypertension. Recently, we demonstrated that a small subset of “innate-like” T lymphocytes, expressing the γ/δ T cell receptor (TCR) rather than the αβ TCR, plays a key role in hypertension and vascular injury. We demonstrated an increased number and activation (CD69 + ) of γδ T cells during the development of hypertension caused by angiotensin (Ang) II infusion, and that deficiency in γδ T cells prevented Ang II-induced hypertension, resistance artery endothelial dysfunction and spleen T-cell activation in mice. We hypothesized that γδ T cells mediate activation of other T cells in hypertension. Method and Results: Fourteen to 15-week old male C57BL/6 wild-type (WT) mice were infused with Ang II (490 ng/kg/min, SC) for 3, 7 and 14 days (n=5-7) and spleen T cell profile was determined by flow cytometry. A correlation was demonstrated between the frequency (FREQ) and the number (#) of activated CD69 + γδ T cells and CD4 + CD69 + T cells (FREQ: r=0.41, P <0.05 and #: r=0.58, P <0.001) and CD8 + CD69 + T cells (FREQ: r=0.36, P <0.05 and #: r=0.50, P <0.01). We also demonstrated a high correlation between the # of CD69 + γδ T cells expressing CD27, a marker of interferon-γ expressing cells and a member of the T-T interaction molecules, with CD4 + CD69 + (r=0.88, P <0.001) and CD8 + CD69 + (r=0.81, P <0.01) T cells after 7 days of Ang II infusion. Conclusion: This study demonstrated an association between CD27 + CD69 + γδ T cells and activated T cells. These results suggest that γδ T cells drive activation of other T cells in Ang II-induced hypertension. Targeting γδ T cells may contribute to reduce inflammation in hypertension.


Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. eaay5516 ◽  
Author(s):  
Marc Rigau ◽  
Simone Ostrouska ◽  
Thomas S. Fulford ◽  
Darryl N. Johnson ◽  
Katherine Woods ◽  
...  

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell–based immunotherapies.


Hypertension ◽  
2019 ◽  
Vol 74 (Suppl_1) ◽  
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

2021 ◽  
Author(s):  
Jennifer R Habel ◽  
Brendon Y Chua ◽  
Lukasz Kedzierski ◽  
Kevin J Selva ◽  
Timon Damelang ◽  
...  

ABSTRACTAlthough pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK cells, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4+ and CD8+ T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 644 ◽  
Author(s):  
Vatzia ◽  
Pierron ◽  
Saalmüller ◽  
Mayer ◽  
Gerner

The Fusarium mycotoxin deoxynivalenol (DON) contaminates animal feed worldwide. In vivo, DON modifies the cellular protein synthesis, thereby also affecting the immune system. However, the functional consequences of this are still ill-defined. In this study, peripheral blood mononuclear cells from healthy pigs were incubated with different DON concentrations in the presence of Concanavalin A (ConA), a plant-derived polyclonal T-cell stimulant. T-cell subsets were investigated for proliferation and expression of CD8α, CD27, and CD28, which are involved in activation and costimulation of porcine T cells. A clear decrease in proliferation of all ConA-stimulated major T-cell subsets (CD4+, CD8+, and γδ T cells) was observed in DON concentrations higher than 0.4 µM. This applied in particular to naïve CD4+ and CD8+ T cells. From 0.8 μM onwards, DON induced a reduction of CD8α (CD4+) and CD27 expression (CD4+ and CD8+ T cells). CD28 expression was diminished in CD4+ and CD8+ T cells at a concentration of 1.6 µM DON. None of these effects were observed with the DON-derivative deepoxy-deoxynivalenol (DOM-1) at 16 µM. These results indicate that DON reduces T-cell proliferation and the expression of molecules involved in T-cell activation, providing a molecular basis for some of the described immunosuppressive effects of DON.


2021 ◽  
Author(s):  
Katherine Kedzierska ◽  
Jennifer Habel ◽  
Brendon Chua ◽  
Lukasz Kedzierski ◽  
Kevin Selva ◽  
...  

Abstract Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4+ and CD8+ T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.


2020 ◽  
Author(s):  
Deming Sun ◽  
Minhee Ko ◽  
Hui Shao ◽  
Henry J. Kaplan

AbstractVarious pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment, where it degrades into adenosine and modulates immune responses. Previous studies concluded that both ATP and its degradation product adenosine are important immune-regulatory molecules; ATP acted as a danger signal that promotes immune responses, but adenosine’s effect was inhibitory. In this study, we show that adenosine plays an important role in balancing Th1 and Th17 pathogenic T cell responses in autoimmune disease. While its effect on Th1 responses is inhibitory, its effect on Th17 responses is enhancing, thereby impacting the balance between Th1 and Th17 responses. Mechanistic studies showed that this effect is mediated via several immune cells, among which γδ T cell activation and dendritic cell differentiation are prominent; adenosine and γδ-mediated immunoregulation synergistically impact each other’s effect. Adenosine augments the activation of γδ T cells, which is an important promoter for Th17 responses and has a strong effect on DC differentiation tipping the balance from generation of DCs that stimulate Th1 responses to those that stimulate Th17 responses. The knowledge acquired in this study should improve our understanding of the immune-regulatory effect of extracellular ATP-adenosine metabolism and improve treatment for autoimmune diseases caused by both Th1 and Th17-type pathogenic T cells.


Sign in / Sign up

Export Citation Format

Share Document