Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways

2014 ◽  
Vol 26 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Dexi Zhou ◽  
Cheng Huang ◽  
Zhen Lin ◽  
Shuxiang Zhan ◽  
Lingna Kong ◽  
...  
Development ◽  
2001 ◽  
Vol 128 (15) ◽  
pp. 3001-3015 ◽  
Author(s):  
Pamela L. Bradley ◽  
Deborah J. Andrew

During development, directed cell migration is crucial for achieving proper shape and function of organs. One well-studied example is the embryonic development of the larval tracheal system of Drosophila, in which at least four signaling pathways coordinate cell migration to form an elaborate branched network essential for oxygen delivery throughout the larva. FGF signaling is required for guided migration of all tracheal branches, whereas the DPP, EGF receptor, and Wingless/WNT signaling pathways each mediate the formation of specific subsets of branches. Here, we characterize ribbon, which encodes a BTB/POZ-containing protein required for specific tracheal branch migration. In ribbon mutant tracheae, the dorsal trunk fails to form, and ventral branches are stunted; however, directed migrations of the dorsal and visceral branches are largely unaffected. The dorsal trunk also fails to form when FGF or Wingless/WNT signaling is lost, and we show that ribbon functions downstream of, or parallel to, these pathways to promote anterior-posterior migration. Directed cell migration of the salivary gland and dorsal epidermis are also affected in ribbon mutants, suggesting that conserved mechanisms may be employed to orient cell migrations in multiple tissues during development.


Oncogene ◽  
2007 ◽  
Vol 26 (9) ◽  
pp. 1268-1275 ◽  
Author(s):  
T Pawson ◽  
N Warner

2021 ◽  
Vol 12 ◽  
Author(s):  
Austin Ferro ◽  
Yohan S. S. Auguste ◽  
Lucas Cheadle

Intercellular signaling molecules such as cytokines and their receptors enable immune cells to communicate with one another and their surrounding microenvironments. Emerging evidence suggests that the same signaling pathways that regulate inflammatory responses to injury and disease outside of the brain also play powerful roles in brain development, plasticity, and function. These observations raise the question of how the same signaling molecules can play such distinct roles in peripheral tissues compared to the central nervous system, a system previously thought to be largely protected from inflammatory signaling. Here, we review evidence that the specialized roles of immune signaling molecules such as cytokines in the brain are to a large extent shaped by neural activity, a key feature of the brain that reflects active communication between neurons at synapses. We discuss the known mechanisms through which microglia, the resident immune cells of the brain, respond to increases and decreases in activity by engaging classical inflammatory signaling cascades to assemble, remodel, and eliminate synapses across the lifespan. We integrate evidence from (1) in vivo imaging studies of microglia-neuron interactions, (2) developmental studies across multiple neural circuits, and (3) molecular studies of activity-dependent gene expression in microglia and neurons to highlight the specific roles of activity in defining immune pathway function in the brain. Given that the repurposing of signaling pathways across different tissues may be an important evolutionary strategy to overcome the limited size of the genome, understanding how cytokine function is established and maintained in the brain could lead to key insights into neurological health and disease.


2021 ◽  
Author(s):  
Ziming Jiang ◽  
Yiming Zhang ◽  
Yu Zhang ◽  
Zhankui Jia ◽  
Zhengguo Zhang ◽  
...  

Abstract Background: Exosomes mediated crosstalk between tumor cells and other stromal cells including tumor associated macrophages (TAM) plays an essential role in reprogramming tumor microenvironment (TME) to facilitate tumor progression. However, the mechanism of tumor derived exosomes promotes bladder cancer progression have not been defined.Methods: Exosomes were extracted from bladder cancer cells MB49 conditioned medium by ultracentrifugation. The effects of MB49-derived exosomes on macrophages polarization were analyzed by qPCR, flow cytometry, and Western blot. The immunosuppressive phenotype and function of MB49-derived exosomes stimulated macrophages were verified by tumor xenograft assays and T cell co-culture experiments. Exosomal miRNAs were analyzed by microarray to identify potential targets regulating macrophage polarization.Results: MB49-derived exosomes could be ingested by macrophages, consequently promoting macrophages immunosuppressive polarization. Mechanically, the MB49-derived exosomes induced macrophage M2 polarization was mediated by down-regulation of PTEN and activation of AKT/STAT3/6 signaling. Moreover, hindrance of the generation or secretion of exosomes by GW4869 inhibited macrophages differentiation into immunosuppressive phenotype and function, thereby suppressed tumor growth in a mouse subcutaneous tumor model.Conclusion: Our study confirmed the contribution of bladder cancer derived exosomes on the establishment of immunosuppressive TME and provided a potential therapeutic target for bladder cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document