scholarly journals Microglia, Cytokines, and Neural Activity: Unexpected Interactions in Brain Development and Function

2021 ◽  
Vol 12 ◽  
Author(s):  
Austin Ferro ◽  
Yohan S. S. Auguste ◽  
Lucas Cheadle

Intercellular signaling molecules such as cytokines and their receptors enable immune cells to communicate with one another and their surrounding microenvironments. Emerging evidence suggests that the same signaling pathways that regulate inflammatory responses to injury and disease outside of the brain also play powerful roles in brain development, plasticity, and function. These observations raise the question of how the same signaling molecules can play such distinct roles in peripheral tissues compared to the central nervous system, a system previously thought to be largely protected from inflammatory signaling. Here, we review evidence that the specialized roles of immune signaling molecules such as cytokines in the brain are to a large extent shaped by neural activity, a key feature of the brain that reflects active communication between neurons at synapses. We discuss the known mechanisms through which microglia, the resident immune cells of the brain, respond to increases and decreases in activity by engaging classical inflammatory signaling cascades to assemble, remodel, and eliminate synapses across the lifespan. We integrate evidence from (1) in vivo imaging studies of microglia-neuron interactions, (2) developmental studies across multiple neural circuits, and (3) molecular studies of activity-dependent gene expression in microglia and neurons to highlight the specific roles of activity in defining immune pathway function in the brain. Given that the repurposing of signaling pathways across different tissues may be an important evolutionary strategy to overcome the limited size of the genome, understanding how cytokine function is established and maintained in the brain could lead to key insights into neurological health and disease.

2020 ◽  
Vol 7 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Eloisa Salvo-Romero ◽  
Patricia Stokes ◽  
Mélanie G. Gareau

The vast diversity of bacteria that inhabit the gastrointestinal tract strongly influence host physiology, not only nutrient metabolism but also immune system development and function. The complexity of the microbiota is matched by the complexity of the host immune system, where they have coevolved to maintain homeostasis ensuring the mutualistic host-microbial relationship. Numerous studies in recent years investigating the gut-brain axis have demonstrated an important role for the gut microbiota in modulating brain development and function, with the immune system serving as an important coordinator of these interactions. Gut bacteria can modulate not only gut-resident immune cells but also brain-resident immune cells. Activation of the immune system in the gut and in the brain are implicated in responses to neuroinflammation, brain injury, as well as changes in neurogenesis and plasticity. Impairments in this bidirectional communication are implicated in the etiopathogenesis of psychiatric and neurodevelopmental diseases and disorders, including autism spectrum disorders, or comorbidities associated with Gastrointestinal diseases, including inflammatory bowel diseases, where dysbiosis is commonly seen. Consequently, probiotics, or beneficial microbes, are being recognized as promising therapeutic targets to modulate behavior and brain development by modulating the gut microbiota. Here we review the role of microbiota-immune interactions in the gut and the brain during homeostasis and disease and their impact on gut-brain communication, brain function, and behavior as well as the use of probiotics in central nervous system alterations. Statement of novelty: The microbiota-gut-brain axis is increasingly recognized as an important physiological pathway for maintaining health and impacting the brain and central nervous system. Increasing evidence suggests that the immune system is crucial for gut-brain signaling. In this review, we highlight the critical studies in the literature that identify the key immune pathways involved.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 957
Author(s):  
Brad T. Casali ◽  
Erin G. Reed-Geaghan

Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer’s disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.


2014 ◽  
Vol 9 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Danya Glaser

Purpose – The purpose of this paper is to outline brain structure and development, the relationship between environment and brain development and implications for practice. Design/methodology/approach – The paper is based on a selected review of the literature and clinical experience. Findings – While genetics determine the sequence of brain maturation, the nature of brain development and functioning is determined by the young child's caregiving environment, to which the developing brain constantly adapts. The absence of input during sensitive periods may lead to later reduced functioning. There is an undoubted immediate equivalence between every mind function – emotion, cognition, behaviour and brain activity, although the precise location of this in the brain is only very partially determinable, since brain connections and function are extremely complex. Originality/value – This paper provides an overview of key issues in neurodevelopment relating to the development of young children, and implications for policy and practice.


2022 ◽  
Author(s):  
Zhen-Ge Luo ◽  
Xin-Yao Sun ◽  
Xiang-Chun Ju ◽  
Yang Li ◽  
Peng-Ming Zeng ◽  
...  

The recently developed brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis, brain disorders, and aging process, limits the utility of brain organoids. In this study, we induced vessel and brain organoids respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures, and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood-brain-barrier (BBB)-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, in particular the vasculature and microglia niche.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125718 ◽  
Author(s):  
Christine Poitou ◽  
Claire Perret ◽  
François Mathieu ◽  
Vinh Truong ◽  
Yuna Blum ◽  
...  

2014 ◽  
Vol 92 (5) ◽  
pp. 321-328 ◽  
Author(s):  
William L. Patterson ◽  
Philippe T. Georgel

Chronic inflammation is a cyclical, self-stimulating process. Immune cells called to sites of inflammation release pro-inflammatory signaling molecules that stimulate activation of inducible enzymes and transcription factors. These enzymes and transcription factors then stimulate production of signaling molecules that attract more immune cells and induce more enzymatic and transcriptional activity, creating a perpetual loop of inflammation. This self-renewing pool of inflammatory stimuli makes for an ideal tumor microenvironment, and chronic inflammation has been linked to oncogenesis, tumor growth, tumor cell survival, and metastasis. Three protein pathways in particular, nuclear factor kappa B (NF-kB), cyclooxygenase (COX), and lipoxygenase (LOX), provide excellent examples of the cyclical, self-renewing nature of chronic inflammation-driven cancers. NF-kB is an inducible transcription factor responsible for the expression of a vast number of inflammation and cancer related genes. COX and LOX convert omega-6 (n-6) and omga-3 (n-3) polyunsaturated fatty acids (PUFA) into pro- and anti-inflammatory signaling molecules. These signaling molecules stimulate or repress activity of all three of these pathways. In this review, we will discuss the pro- and anti-inflammatory functions of these fatty acids and their role in chronic inflammation and cancer progression.


2017 ◽  
Vol 97 ◽  
pp. 36-45 ◽  
Author(s):  
Hanna Bayer ◽  
Kerstin Lang ◽  
Eva Buck ◽  
Julia Higelin ◽  
Lara Barteczko ◽  
...  

1998 ◽  
Vol 21 (3) ◽  
pp. 330-331 ◽  
Author(s):  
Diane F. Halpern

New knowledge about the sexual differentiation of the brain profoundly changes our understanding of basic topics in brain development such as the false dichotomy between long-lasting and transient effects of hormones on neural activity, the importance of ovarian hormones in brain development, the plasticity of neural structures throughout the life span, and the way measurement issues affect research conclusions.


Sign in / Sign up

Export Citation Format

Share Document