Dephosphorylation of Fas-ligand and caveolin-1 is a prerequisite step in Fas-ligand - caveolin-1 complex formation and cell death stimulation

2020 ◽  
Vol 70 ◽  
pp. 109590
Author(s):  
Xenia A. Glukhova ◽  
Julia A. Trizna ◽  
Olga V. Proussakova ◽  
Vladimir G. Gogvadze ◽  
Igor P. Beletsky
1999 ◽  
Vol 19 (5) ◽  
pp. 3842-3847 ◽  
Author(s):  
Atsushi Suzuki ◽  
Yumi Tsutomi ◽  
Naoe Yamamoto ◽  
Tomoko Shibutani ◽  
Kouichi Akahane

ABSTRACT Death receptor Fas transduces cell death signaling upon stimulation by Fas ligand, and this death signaling is mediated by caspase. Recently, we reported that the cell cycle regulator p21 interacts with procaspase 3 to resist Fas-mediated cell death. In the present study, the molecular characterization and functional region of the procaspase 3-p21 complex was further investigated. We observed the p21 expression in the mitochondrial fraction of HepG2 cells and detected Fas-mediated cell death only in the presence of actinomycin D. However, mitochondrial-DNA-lacking HepG2 (MDLH) cells showed this effect even in the absence of actinomycin D. Both p21 and procaspase 3 were expressed in MDLH cells, but the procaspase 3-p21 complex formation was not observed. Interestingly, the resistance to Fas-mediated cell death in the MDLH cells without actinomycin D was recovered after microinjection of HepG2-derived mitochondria into the MDLH cells. We conclude that mitochondria are necessary for procaspase 3-p21 complex formation and propose that the mitochondrial role during cell death is not only death induction but also death suppression.


2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Xenia A. Glukhova ◽  
Julia A. Trizna ◽  
Olga V. Proussakova ◽  
Vladimir Gogvadze ◽  
Igor P. Beletsky
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayley I. Muendlein ◽  
Wilson M. Connolly ◽  
Zoie Magri ◽  
Irina Smirnova ◽  
Vladimir Ilyukha ◽  
...  

AbstractInflammation and cell death are closely linked arms of the host immune response to infection, which when carefully balanced ensure host survival. One example of this balance is the tightly regulated transition from TNFR1-associated pro-inflammatory complex I to pro-death complex II. By contrast, here we show that a TRIF-dependent complex containing FADD, RIPK1 and caspase-8 (that we have termed the TRIFosome) mediates cell death in response to Yersinia pseudotuberculosis and LPS. Furthermore, we show that constitutive binding between ZBP1 and RIPK1 is essential for the initiation of TRIFosome interactions, caspase-8-mediated cell death and inflammasome activation, thus positioning ZBP1 as an effector of cell death in the context of bacterial blockade of pro-inflammatory signaling. Additionally, our findings offer an alternative to the TNFR1-dependent model of complex II assembly, by demonstrating pro-death complex formation reliant on TRIF signaling.


2021 ◽  
Vol 22 (4) ◽  
pp. 2177
Author(s):  
Shulamit B. Wallach-Dayan ◽  
Dmytro Petukhov ◽  
Ronit Ahdut-HaCohen ◽  
Mark Richter-Dayan ◽  
Raphael Breuer

By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.


2003 ◽  
Vol 3 (12) ◽  
pp. 33-46 ◽  
Author(s):  
Andreas Linkermann ◽  
Jing Qian ◽  
Dieter Kabelitz ◽  
Ottmar Janssen

1995 ◽  
Vol 181 (1) ◽  
pp. 71-77 ◽  
Author(s):  
M R Alderson ◽  
T W Tough ◽  
T Davis-Smith ◽  
S Braddy ◽  
B Falk ◽  
...  

A significant proportion of previously activated human T cells undergo apoptosis when triggered through the CD3/T cell receptor complex, a process termed activation-induced cell death (AICD). Ligation of Fas on activated T cells by either Fas antibodies or recombinant human Fas-ligand (Fas-L) also results in cytolysis. We demonstrate that these two pathways of apoptosis are causally related. Stimulation of previously activated T cells resulted in the expression of Fas-L mRNA and lysis of Fas-positive target cells. Fas-L antagonists inhibited AICD of T cell clones and staphylococcus enterotoxin B (SEB)-specific T cell lines. The data indicate AICD in previously stimulated T cells is mediated by Fas/Fas-L interactions.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Kimito Kawahata ◽  
Dengli Wang ◽  
Masahiro Nishibori ◽  
...  

AbstractMuscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.


Sign in / Sign up

Export Citation Format

Share Document