scholarly journals Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Kimito Kawahata ◽  
Dengli Wang ◽  
Masahiro Nishibori ◽  
...  

AbstractMuscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.

1998 ◽  
Vol 188 (6) ◽  
pp. 1203-1208 ◽  
Author(s):  
Graham S. Ogg ◽  
P. Rod Dunbar ◽  
Pedro Romero ◽  
Ji-Li Chen ◽  
Vincenzo Cerundolo

Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. Using tetrameric complexes of human histocompatibility leukocyte antigen (HLA) class I to identify antigen-specific T cells ex vivo, we observed high frequencies of circulating MelanA-specific, A*0201-restricted cytotoxic T lymphocytes (A2–MelanA tetramer+ CTLs) in seven of nine HLA-A*0201–positive individuals with vitiligo. Isolated A2–MelanA tetramer+ CTLs were able to lyse A*0201-matched melanoma cells in vitro and their frequency ex vivo correlated with extent of disease. In contrast, no A2–MelanA tetramer+ CTL could be identified ex vivo in all four A*0201-negative vitiligo patients or five of six A*0201-positive asymptomatic controls. Finally, we observed that the A2–MelanA tetramer+ CTLs isolated from vitiligo patients expressed high levels of the skin homing receptor, cutaneous lymphocyte-associated antigen, which was absent from the CTLs seen in the single A*0201-positive normal control. These data are consistent with a role of skin-homing autoreactive melanocyte-specific CTLs in causing the destruction of melanocytes seen in autoimmune vitiligo. Lack of homing receptors on the surface of autoreactive CTLs could be a mechanism to control peripheral tolerance in vivo.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3534-3534
Author(s):  
Juan F Vera ◽  
Valentina Hoyos ◽  
Barbara Savoldo ◽  
Concetta Quintarelli ◽  
Greta A Giordano ◽  
...  

Abstract Providing a proliferative and survival advantage to tumor-specific cytotoxic T lymphocytes (CTLs) remains a challenge in the adoptive therapy of cancer patients. It is now evident that the in vivo expansion of T cells after adoptive transfer is best accomplished in the lymphodepleted host due to the increased production of endogenous IL15 and IL7, which help restore lymphopoiesis. We have found that antigen activated cytotoxic T lymphocytes (CTLs) directed to tumor associated epitopes (for example derived from EBV, or from cancer testis antigens such as PRAME) down regulate a chain of IL7R, a common γ chain cytokine receptor, impairing their capacity to respond to IL7. We hypothesized that despite receptor downregulation, the signal transduction pathway for IL7R would remain intact in the CTLs so that forced expression of IL7Rα would restore IL7 responsiveness and improve in vivo expansion and survival of CTLs. We used EBV-specific CTLs as our model, and showed in vitro that a functional IL-7Ra molecule can be expressed in CTLs using retroviral gene transfer so that the percentage of receptor + cells increased from 2.4%±0.5% to 50%±20. This modification restored the in vitro proliferation of genetically modified CTLs in response to IL7 so that cell numbers increased from 1×106 cells to 0.1×109 (range, 0.6×108 to 0.3×109)] comparable with the effects of IL2 [from 1×106 cells to 0.7×109 (range, 0.7×107 to 1.6×109)] In contrast, control EBV-CTL with IL7 progressively declined in number (p<0.001) These effects were accomplished without alteration of antigen specificity or responsiveness to other common γ chain cytokines, and cell survival remained antigen dependent. In a xenogeneic mouse model, CTLs expressing IL7Ra significantly expanded in vivo in response to EBV-tumor antigen and the administration of IL7. By day 15, both control CTLs and IL7Ra+ CTLs had modestly proliferated in response to IL-2 (2.3 fold, range 1.1–5.1 for control CTLs, and 2.67 fold, range 0.6 to 8.15 for IL7Ra+ CTLs). In contrast, only IL7Ra+ CTLs significantly expanded in the presence of IL7, showing a 6.09 fold increase (range 0.7 to 25.2) compared to mice that received control CTLs and IL7 (0.9 fold, range 0.5–1.7) (p<0.0001). Modified CTLs also provided enhanced anti-tumor activity. SCID mice engrafted i.p with 3×106 tumor cells marked with Firefly luciferase, showed a rapid increase in signal in the absence of CTLs (Fold increase in luminance = 29.8 median, range 4.4 to 103) by day 14 after tumor engraftment. Similar tumor growth was observed in mice receiving IL7Ra+ CTLs without cytokines (luminance increase14.4 fold, range 1 to 90). In contrast, mice receiving IL7Ra+ CTLs and either IL2 or IL7, had a decline in tumor luminance (fold expansion 0.7, range 0.08 to 2.9, and 0.8, range 0.004 to 3.5, respectively p<0.0001). Although growth of the transgenic T cells remained antigen dependent, as a further safety measure, we incorporated an inducible suicide gene based on icaspase9 that can be activated by exposure to a small chemical inducer of dimerization (CID) (AP20187). Incorporation of this suicide gene did not affect the in vitro or in vivo anti-tumor activity of the CTL’s but allowed them to be rapidly eliminated. So that after a single dose of CID (50 nM) the transgenic population were decreased by >98.5% We conclude that forced expression of the IL-7Ra by CTLs can be used to recapitulate the response of these cells to this cytokine and thereby promote their in vivo anti-tumor activity after adoptive transfer either in a lymphodepleted host or after the administration of the recombinant protein.


Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 617-625 ◽  
Author(s):  
Sven Baumann ◽  
Anja Dostert ◽  
Natalia Novac ◽  
Anton Bauer ◽  
Wolfgang Schmid ◽  
...  

Abstract Glucocorticoids (GCs) play an important role in the regulation of peripheral T-cell survival. Their molecular mechanism of action and the question of whether they have the ability to inhibit apoptosis in vivo, however, are not fully elucidated. Signal transduction through the glucocorticoid receptor (GR) is complex and involves different pathways. Therefore, we used mice with T-cell-specific inactivation of the GR as well as mice with a function-selective mutation in the GR to determine the signaling mechanism. Evidence is presented for a functional role of direct binding of the GR to 2 negative glucocorticoid regulatory elements (nGREs) in the CD95 (APO-1/Fas) ligand (L) promoter. Binding of GRs to these nGREs reduces activation-induced CD95L expression in T cells. These in vitro results are fully supported by data obtained in vivo. Administration of GCs to mice leads to inhibition of activation-induced cell death (AICD). Thus, GC-mediated inhibition of CD95L expression of activated T cells might contribute to the anti-inflammatory function of steroid drugs. (Blood. 2005;106:617-625)


1998 ◽  
Vol 187 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Siddhartha Mukherjee ◽  
Pankaj Trivedi ◽  
David M. Dorfman ◽  
George Klein ◽  
Alain Townsend

Major histocompatibility complex class I–restricted cytotoxic T lymphocytes (CTLs) specific for epitopes within eight of the nine Epstein Barr Virus (EBV)-encoded latency-associated proteins have been recovered from EBV-infected human subjects by restimulation of lymphocytes in vitro. However, human class I–restricted CTL responses capable of recognizing EBNA-1 expressing cells were not detected in these studies. We have raised a murine CTL line that recognizes an epitope within EBNA-1 by immunizing mice with a vaccinia virus encoding a COOH-terminal EBNA-1 fragment. This novel CTL line was used to investigate whether the epitope (positions 509–517 in EBNA-1, presented through Kd) was presented to CTL by mouse cells expressing full-length EBNA-1 or a deletion mutant of EBNA-1, lacking the Glycine-Alanine (Gly-Ala)–rich region. Cells expressing full-length EBNA-1 are not lysed by the CTL line, whereas cells expressing the Gly-Ala deletion mutant are recognized. These results suggest that epitopes from full-length EBNA-1 are poorly presented, and that the Gly-Ala–rich region is responsible for this phenomenon. The inefficient presentation of EBNA-1–derived epitopes may explain the absence or rarity of EBNA-1–specific CTLs in vivo, a strategy that may allow EBV to maintain persistence within the immunocompetent host without being eliminated by CTLs.


1992 ◽  
Vol 77 (5) ◽  
pp. 757-762 ◽  
Author(s):  
Frank P. Holladay ◽  
Teresa Heitz ◽  
Gary W. Wood

✓ Specific immune responses against malignant brain tumors have been difficult to demonstrate. Moreover, immunotherapy has met with little success, despite using lymphocytes with high levels of cytotoxicity against brain tumor cells. Lymphokine-activated killer (LAK) cells that nonspecifically kill brain tumor cells are produced by stimulating resting precursors with high concentrations of interleukin-2 (IL-2). Cytotoxic T lymphocytes that specifically kill brain tumor cells are produced by stimulating antigen receptor-positive immune-cell precursors with tumor cells. In an attempt to gain insight into immune cell function against brain tumors, the present study compared the in vitro and in vivo activities of LAK cells and cytotoxic T lymphocytes produced against RT2, a fast-growing rat glioma cell line. Lymphokine-activated killer cells were produced by stimulating normal rat spleen cells with 1000 units of IL-2, and RT2-specifie cytotoxic T lymphocytes were produced by priming them in vivo with RT2 and Corynebacterium parvum and restimulating primed spleen cells with RT2 in vitro. Lymphokine-activated killer cells were highly cytotoxic for a panel of syngeneic and allogeneic brain tumor and non-brain tumor target cells, including RT2, as measured in a 4-hour 51Cr release assay. Cytotoxic T lymphocytes were highly cytotoxic only for syngeneic brain tumor target cells. Lymphokine-activated killer cells and cytotoxic T lymphocytes were tested for in vivo antitumor activity against intracerebral RT2 by intravenous adoptive transfer of activated lymphocytes. Untreated rats died in approximately 2 weeks. Lymphokine-activated killer cells plus IL-2 failed to affect survival when treatment was initiated as early as 1 day following tumor inoculation. Cytotoxic T lymphocytes and IL-2 administered as late as Day 5 rejected progressing intracerebral tumor. Thus, although both cytotoxic T lymphocytes and LAK cells exhibited high levels of in vitro killing of glioma cells, only cytotoxic T lymphocytes rejected progressing intracerebral tumors.


1991 ◽  
Vol 174 (1) ◽  
pp. 27-33 ◽  
Author(s):  
J H Falkenburg ◽  
H M Goselink ◽  
D van der Harst ◽  
S A van Luxemburg-Heijs ◽  
Y M Kooy-Winkelaar ◽  
...  

Minor histocompatibility (mH) antigens appear to play a major role in bone marrow transplantation (BMT) using HLA-identical donors. Previously, we reported the isolation of major histocompatibility complex (MHC)-restricted mH antigen-specific cytotoxic T lymphocytes (CTL) from patients with graft-vs.-host disease or rejection after HLA-identical BMT. We have demonstrated that mH antigens can be recognized on hematopoietic progenitor cells, and residual recipient CTL specific for mH antigens expressed on donor hematopoietic progenitor cells may be responsible for graft rejection in spite of intensive conditioning regimens in HLA-identical BMT. Here, we investigated whether mH antigen-specific CTL directed against the mH antigens HA-1 to HA-5 and the male-specific antigen H-Y were capable of antigen-specific inhibition of in vitro growth of clonogenic leukemic precursor cells. We demonstrate that mH antigen-specific CTL against all mH antigens tested can lyse freshly obtained myeloid leukemic cells, that these mH antigen-specific CTL can inhibit their clonogenic leukemic growth in vitro, and that this recognition is MHC restricted. We illustrate that leukemic (precursor) cells can escape elimination by mH antigen-specific CTL by impaired expression of the relevant MHC restriction molecule. We suggest that mH antigen-specific MHC-restricted CTL may be involved in vivo in the graft-vs.-leukemia reactivity after BMT.


Sign in / Sign up

Export Citation Format

Share Document