scholarly journals Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation

Cell Reports ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 109101
Author(s):  
Nicholas T. Crump ◽  
Andreas V. Hadjinicolaou ◽  
Meng Xia ◽  
John Walsby-Tickle ◽  
Uzi Gileadi ◽  
...  
2017 ◽  
Vol 214 (10) ◽  
pp. 3123-3144 ◽  
Author(s):  
Duygu Ucar ◽  
Eladio J. Márquez ◽  
Cheng-Han Chung ◽  
Radu Marches ◽  
Robert J. Rossi ◽  
...  

Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency.


2004 ◽  
Vol 34 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Xin Chen ◽  
Takaya Murakami ◽  
Joost J. Oppenheim ◽  
O. M. Zack Howard

2020 ◽  
Vol 117 (10) ◽  
pp. 5442-5452 ◽  
Author(s):  
Wenliang Wang ◽  
Maria Fasolino ◽  
Benjamin Cattau ◽  
Naomi Goldman ◽  
Weimin Kong ◽  
...  

Chimeric antigen receptor (CAR)-T immunotherapy has yielded impressive results in several B cell malignancies, establishing itself as a powerful means to redirect the natural properties of T lymphocytes. In this strategy, the T cell genome is modified by the integration of lentiviral vectors encoding CAR that direct tumor cell killing. However, this therapeutic approach is often limited by the extent of CAR-T cell expansion in vivo. A major outstanding question is whether or not CAR-T integration itself enhances the proliferative competence of individual T cells by rewiring their regulatory landscape. To address this question, it is critical to define the identity of an individual CAR-T cell and simultaneously chart where the CAR-T vector integrates into the genome. Here, we report the development of a method called EpiVIA (https://github.com/VahediLab/epiVIA) for the joint profiling of the chromatin accessibility and lentiviral integration site analysis at the population and single-cell levels. We validate our technique in clonal cells with previously defined integration sites and further demonstrate the ability to measure lentiviral integration sites and chromatin accessibility of host and viral genomes at the single-cell resolution in CAR-T cells. We anticipate that EpiVIA will enable the single-cell deconstruction of gene regulation during CAR-T therapy, leading to the discovery of cellular factors associated with durable treatment.


2018 ◽  
Author(s):  
D. Michieletto ◽  
M. Lusic ◽  
D. Marenduzzo ◽  
E. Orlandini

Certain retroviruses, including HIV, insert their DNA in a non-random fraction of the host genome via poorly understood selection mechanisms. Here, we develop a biophysical model for retroviral integrations as stochastic and quasi-equilibrium topological reconnections between polymers. We discover that physical effects, such as DNA accessibility and elasticity, play important and universal roles in this process. Our simulations predict that integration is favoured within nucleosomal and flexible DNA, in line with experiments, and that these biases arise due to competing energy barriers associated with DNA deformations. By considering a long chromosomal region in human T-cells during interphase, we discover that at these larger scales integration sites are predominantly determined by chromatin accessibility. Finally, we propose and solve a reaction-diffusion problem that recapitulates the distribution of HIV hot-spots within T-cells. With few generic assumptions, our model can rationalise experimental observations and identifies previously unappreciated physical contributions to retroviral integration site selection.


2021 ◽  
Author(s):  
Amy F Chen ◽  
Benjamin Parks ◽  
Arwa Kathiria ◽  
Benjamin Ober-Reynolds ◽  
Jorg Goronzy ◽  
...  

Oligonucleotide-conjugated antibodies have allowed for joint measurement of surface protein abundance and the transcriptome in single cells using high-throughput sequencing. Extending these measurements to gene regulatory proteins in the nucleus would provide a powerful means to link changes in abundance of trans-acting TFs to changes in activity of cis-acting elements and expression of target genes. Here, we introduce Nuclear protein Epitope, chromatin Accessibility, and Transcriptome sequencing (NEAT-seq), a technique to simultaneously measure nuclear protein abundance, chromatin accessibility, and the transcriptome in single cells. We apply this technique to profile CD4 memory T cells using a panel of master transcription factors (TFs) that drive distinct helper T cell subsets and regulatory T cells (Tregs) and identify examples of TFs with regulatory activity gated by three distinct mechanisms: transcription, translation, and regulation of chromatin binding. Furthermore, we identify regulatory elements and target genes associated with each TF, which we use to link a non-coding GWAS SNP within a GATA motif to both strong allele-specific chromatin accessibility in cells expressing high levels of GATA3 protein, and a putative target gene.


Diabetes ◽  
2022 ◽  
Author(s):  
Naiara G. Bediaga ◽  
Alexandra L. Garnham ◽  
Gaetano Naselli ◽  
Esther Bandala-Sanchez ◽  
Natalie L. Stone ◽  
...  

Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of at-risk children, associated with progression to islet autoimmunity. We analysed gene expression by RNAseq in CD4+ and CD8+ T cells, NK cells and B cells, and chromatin accessibility by ATACseq in CD4+ T cells, in five genetically at-risk children with islet autoantibodies who progressed to diabetes over a median of 3 years (‘Progressors’) compared to five children matched for sex, age and HLA-DR who had not progressed (‘Non-progressors). In Progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 Progressors and 11 Non-progressors. Flow cytometry confirmed progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ T cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.


2022 ◽  
Author(s):  
Naiara G. Bediaga ◽  
Alexandra L. Garnham ◽  
Gaetano Naselli ◽  
Esther Bandala-Sanchez ◽  
Natalie L. Stone ◽  
...  

Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of at-risk children, associated with progression to islet autoimmunity. We analysed gene expression by RNAseq in CD4<sup>+</sup> and CD8<sup>+</sup> T cells, NK cells and B cells, and chromatin accessibility by ATACseq in CD4<sup>+</sup> T cells, in five genetically at-risk children with islet autoantibodies who progressed to diabetes over a median of 3 years (‘Progressors’) compared to five children matched for sex, age and HLA-DR who had not progressed (‘Non-progressors). In Progressors, differentially expressed genes (DEGs) were largely confined to CD4<sup>+</sup> T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 Progressors and 11 Non-progressors. Flow cytometry confirmed progression was associated with expansion of CD4<sup>+ </sup>cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4<sup>+ </sup>cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4<sup>+ </sup>T cells play a role in promoting progression to type 1 diabetes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 861-861
Author(s):  
Mary Philip ◽  
Lauren Fairchild ◽  
Liping Sun ◽  
Agnes Viale ◽  
Taha Merghoub ◽  
...  

Abstract T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Upon antigen encounter, T cells differentiate into discrete phenotypic and functional states. Cellular differentiation is driven by epigenetic remodeling, however, it is not known whether and how epigenetic programming establishes and regulates tumor-specific T cell (TST) dysfunction and determines a T cell's ability to respond to therapeutic interventions such as immune checkpoint blockade (PD-1 and CTLA-4). Here for the first time, we (1) identify chromatin dynamics underlying T cell differentiation to the dysfunctional state in mouse and human tumors and (2) provide insights into the epigenetic and transcriptional regulatory mechanisms determining T cell susceptibility to therapeutic reprogramming. Using a genetic cancer mouse model, we previously showed that CD8 TST become unresponsive early during carcinogenesis at the pre-malignant stage, even before the emergence of a pathologically-defined malignant tumor. While T cell dysfunction was initially reversible, it ultimately became a fixed state that could not be rescued by therapeutic interventions such as PD1 checkpoint blockade. To identify the hierarchical changes in chromatin states resulting in "dysfunction imprinting," we used the Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to map the genome-wide changes in chromatin accessibility in TST cells over the course of cancer development. In parallel, we carried out RNA-Seq to determine the interplay between chromatin remodeling and transcriptional networks. Substantial chromatin remodeling occurred during early T cell activation in the pre-malignant lesion (days 5-7) followed by a second wave of chromatin accessibility changes between days 7 and 14. Strikingly, after the second wave, no further CD8 T cell chromatin remodeling occurred during carcinogenesis, even after progression to an advanced late-stage tumor with an immunosuppressive microenvironment. Interestingly, these 2 distinct chromatin accessibility patterns in TST correlated temporally with the plastic and fixed dysfunctional states and susceptibility to therapeutic reprogramming in vivo. To understand the transition from plastic to fixed dysfunction, we analyzed the differential expression of transcription factors (TF) in conjunction with changes in peak accessibility at TF-binding motifs genome-wide. We identified a network including CD8 T cell regulatory TF such as TCF1, LEF1, BLIMP1, and BACH2 as well as less-well-characterized TF (NR4A2, TOX) potentially controlling differentiation to the dysfunctional state. Moreover, ATAC-Seq analysis of human tumor-infiltrating CD8 T cells revealed similar tumor-associated changes in peak accessibility, and studies are ongoing to assess the associated TF networks. In this study, we have defined discrete chromatin states and associated transcriptional networks underlying plastic and fixed dysfunction in TST, thus providing new insights into the genomic control circuitry of T cell differentiation/dysfunction that may point to new strategies for cellular reprogramming of T cells for cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 114 (13) ◽  
pp. E2776-E2785 ◽  
Author(s):  
Giuliana P. Mognol ◽  
Roberto Spreafico ◽  
Victor Wong ◽  
James P. Scott-Browne ◽  
Susan Togher ◽  
...  

T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti–PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.


2007 ◽  
Vol 179 (9) ◽  
pp. 5659-5668 ◽  
Author(s):  
Kalet Leon ◽  
Karina Garcia ◽  
Jorge Carneiro ◽  
Agustin Lage

Sign in / Sign up

Export Citation Format

Share Document