scholarly journals The chromatin accessibility signature of human immune aging stems from CD8+ T cells

2017 ◽  
Vol 214 (10) ◽  
pp. 3123-3144 ◽  
Author(s):  
Duygu Ucar ◽  
Eladio J. Márquez ◽  
Cheng-Han Chung ◽  
Radu Marches ◽  
Robert J. Rossi ◽  
...  

Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency.

2015 ◽  
Vol 143 (suppl_1) ◽  
pp. A034-A034 ◽  
Author(s):  
Jason M. Schenkel ◽  
Kathryn A. Fraser ◽  
Lalit K. Beura ◽  
Kristen E. Pauken ◽  
David Masopust ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 592-592
Author(s):  
Roberto Antonio Leon-Ferre ◽  
Kaitlyn McGrath ◽  
Vera J. Suman ◽  
Jodi M Carter ◽  
Krishna R. Kalari ◽  
...  

592 Background: Immune responses in the tumor microenvironment have prognostic and predictive value in BC. However, the potential of immune responses observed in peripheral blood as biomarkers in BC remains unclear. We have shown that a higher frequency of circulating monocytes and a lower frequency of antigen-experienced memory CD8+ T cells are associated with response to NAC in triple negative BC (Leon-Ferre et al SABCS 2019). Here, we used cytometry by time-of-flight (CyTOF) to evaluate associations between circulating immune cells, clinical features and response to T-based NAC in HER2+ BC. Methods: PBMC suspensions from 36 pts with stage I-III HER2+ BC were prospectively collected prior to initiation of T-based NAC, stained with 29 metal-tagged antibodies optimized to identify major human immune cell subsets, and acquired in the Helios CyTOF instrument. Differential abundance analysis of immune cells by clinical characteristics and by NAC response was evaluated using Wilcoxon rank sum test. % of immune cell subsets is presented as % of all PBMCs. Results: Most pts presented with ER- tumors (56%), measuring > 5cm (64%) and with nodal metastases (78%). After NAC, 16 pts (44%) achieved pathologic complete response (pCR). Analysis of preNAC PBMCs demonstrated a significantly higher number of B cells (8% vs 5%, p = 0.05) and effector memory CD8+ T cells (CD45RA-/CCR7-, 3 vs 1%, p = 0.02) in pts with pCR compared to those with residual disease. Of the B cell subsets, naïve B cells (CD24-/CD27-) were higher in pts who achieved pCR vs not (7% vs 4%, 0 = 0.04). Regarding clinical characteristics, cN+ pts at presentation exhibited a lower number of peripheral blood T cells compared to cN- pts (47% vs 63%, p = 0.03). Of the T cell subsets, overall CD4+ and naïve CD4+ T cells (CD45RA+/CCR7+) were lower in cN+ vs cN- pts (31% vs 45%, p = 0.05; and 11% vs 24%, p = 0.04). We also observed differences in CD56+/CD16- NK cells by ER status (ER- 1% vs ER+ 3%, p = 0.01), and a moderate negative correlation between age and % circulating CD8+ T cells (rho -0.4669, p = 0.004). Conclusions: Distinct peripheral blood immune cell profiles are observed in HER2+ BC at diagnosis, and are associated with response to T-based NAC and initial clinical characteristics. Notably, pts who later achieved pCR had a relative abundance of B cells and effector memory CD8+ T cells at diagnosis. These data suggest that immune cell phenotyping in peripheral blood may have potential as a biomarker to predict response to NAC in BC.


2020 ◽  
Vol 32 (11) ◽  
pp. 703-708 ◽  
Author(s):  
Akihiro Shimba ◽  
Koichi Ikuta

Abstract Environmental cues such as the day–night cycle or stressors trigger the production of glucocorticoids (GCs) by the adrenal cortex. GCs are well known for their anti-inflammatory effects that suppress the production of inflammatory cytokines and induce the apoptosis of lymphocytes. Recent studies in mice, however, have revealed pro-inflammatory effects. The diurnal oscillation of GCs induces the expression of IL-7 receptor α (IL-7Rα) and C–X–C motif chemokine receptor 4 (CXCR4) at the active phase, which drives the diurnal homing of T cells into lymphoid organs. This accumulation of T cells at the active phase enhances T-cell priming against bacterial infection and antigen immunization, leading to an increase of effector CD8 T cells and antibody production. GCs induced by moderate stress trigger the homing of memory CD8 T cells into the bone marrow and support the maintenance and response of these cells. Thus, endogenous GCs have a self-defense function to enhance adaptive immune responses. By contrast, strong stress induces even higher GC levels and causes chronic inflammation and autoimmunity. Because GCs can enhance the differentiation and function of T-helper 2 (Th2) and Th17 cells, high stress-induced GC levels might enhance inflammation via Th17 cell differentiation. Overall, the positive and negative effects of GCs may regulate the balance between normal immune responses and susceptibility to infections and inflammatory diseases.


2021 ◽  
Author(s):  
Shu Shien Chin ◽  
Erik Guillen ◽  
Laurent Chorro ◽  
Sooraj Achar ◽  
Susanne Oberle ◽  
...  

Cognate antigen signal controls CD8+ T cell priming, expansion size and effector versus memory cell fates, but it is not known if and how it modulates the functional features of memory CD8+ T cells. Here we show that the strength of T cell receptor (TCR) signaling determines the requirement for interleukin-2 (IL-2) signals to form a pool of memory CD8+ T cells that competitively re-expand upon secondary antigen encounter. Combining strong TCR and intact IL-2 signaling synergistically induces genome-wide chromatin accessibility in regions targeting a wide breadth of biological processes, consistent with their greater functional fitness. Chromatin accessibility in promoters of genes encoding for stem cell, cell cycle and calcium-related proteins correlated with faster intracellular calcium accumulation, initiation of cell cycle and more robust expansion. High-dimensional flow-cytometry analysis also highlights higher subset diversity and phenotypes. These results formally establish that epitope selection in vaccine design strongly impacts memory CD8+ T cell epigenetic programming and functions.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3195-3195 ◽  
Author(s):  
Jooeun Bae ◽  
Parayath Neha ◽  
Mansoor Amiji ◽  
Nikhil Munshi ◽  
Kenneth Anderson

Abstract Background: B-cell Maturation Antigen (BCMA), a member of the tumor necrosis factor (TNF) receptor superfamily and the receptor for binding of B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), is a promising therapeutic target for MM. Due to its restricted expression pattern on MM cells and plasma cells along with its role in promoting MM cells growth, survival, and drug resistance, BCMA is being targeted by several immunotherapeutic strategies including antibodies, immunotoxins, bispecific T-cell engagers, and CAR-T cells. Recently, we have identified nanomedicine-based therapeutics targeting BCMA as a promising area of translational research to effectively evoke and augment anti-tumor responses in MM patients. Several nanomedicines are available and more advanced nanoparticle constructs are under development for antigen encapsulation. To this end, we have designed a heteroclitic BCMA peptide encapsulated nanoparticle-based cancer vaccine to overcome the limitations of free peptide vaccines including poor peptide stability, susceptibility to enzyme degradation, and low antigen uptake and delivery. Furthermore, the nanotechnology-based cancer vaccine was developed to induce more robust BCMA-specific CD8+ cytotoxic T lymphocytes (CTL) activities in MM patients, with more sustained antigen release and increased bioavailability and presentation of the immunogenic peptide. Here, we examine the potential of a novel nanomedicine-based therapeutic delivery system specific to BCMA antigen to treat the patients with MM. Objective: The purpose of this study was to design the optimal nanoparticle encapsulated BCMA antigen constructs to efficiently evoke and develop the BCMA-specific CD8+ CTL with functional anti-myeloma activities. Findings: Nanoparticles [liposome or poly(D,L-lactide-co-glycolide) (PLGA)] with different antigen-release kinetics demonstrated their capacity to effectively deliver heteroclitic BCMA peptideto antigen-presenting cells and evoke BCMA antigen-specific CTL with anti-MM activities. The heteroclitic BCMA peptide encapsulated nanoparticles demonstrated a higher uptake by human dendritic cells than free peptide, with the highest uptake mediated with liposome-based nanoparticles. In contrast, BCMA-specific CTL induced with PLGA-based nanoparticle demonstrated the highest functional activities and specific immune responses against MM cells. The PLGA/BCMA peptide nanoparticle induced BCMA-specific CTL displayed the highest increases in CD107a degranulation, the antigen-specific CD8+ T cells proliferation and Th-1 type cytokines (IFN-g, IL-2, TNF-a) production to MM patients' tumor cells and MM cell lines compared to BCMA-CTL generated with free BCMA peptide or liposome/BCMA peptide nanoparticle. These observations were aligned with the highest level of CD28 costimulatory molecules upregulation, Tetramer+ CTL generation and peptide-specific responses within the BCMA-CTL generated by PLGA/BCMA nanoparticles. Furthermore, the PLGA/BCMA nanoparticles triggered a more robust induction of antigen-specific memory CD8+ T cells, which demonstrated significantly higher anti-tumor activities, evidenced by CD107a degranulation and IFN-g production, compared to non-memory CD8+ T cells within the BCMA-CTL. Especially, the increased central memory CTL development and their anti-tumor activities evoked by PLGA/BCMA peptide were associated with the optimal peptide release kinetics and enhanced immunogenicity of the antigen via this nanotechnology. Thus, these results demonstrate that the heteroclitic BCMA peptide encapsulated nanoparticle strategy supports the peptide delivery into dendritic cells and then subsequently to T cells, resulting in effective induction of BCMA-specific central memory CTL with poly-functional activities against MM. Significance: These results demonstrate the utility of nanotechnology using encapsulated heteroclitic BCMA peptide to enhance the immunogenicity of BCMA peptide-specific therapeutics against MM. Importantly, our observations provide the framework for therapeutic application of PLGA-based heteroclitic BCMA peptide delivery to enhance the BCMA-specific memory T cell immune responses, overcome the limitations of current peptide-based cancer vaccine, and improve the patient outcome in MM. Disclosures Munshi: OncoPep: Other: Board of director. Anderson:Bristol Myers Squibb: Consultancy; Celgene: Consultancy; Millennium Takeda: Consultancy; C4 Therapeutics: Equity Ownership, Other: Scientific founder; OncoPep: Equity Ownership, Other: Scientific founder; Gilead: Membership on an entity's Board of Directors or advisory committees.


Science ◽  
2014 ◽  
Vol 346 (6205) ◽  
pp. 98-101 ◽  
Author(s):  
Jason M. Schenkel ◽  
Kathryn A. Fraser ◽  
Lalit K. Beura ◽  
Kristen E. Pauken ◽  
Vaiva Vezys ◽  
...  

The pathogen recognition theory dictates that, upon viral infection, the innate immune system first detects microbial products and then responds by providing instructions to adaptive CD8 T cells. Here, we show in mice that tissue resident memory CD8 T cells (TRMcells), non-recirculating cells located at common sites of infection, can achieve near-sterilizing immunity against viral infections by reversing this flow of information. Upon antigen resensitization within the mouse female reproductive mucosae, CD8+TRMcells secrete cytokines that trigger rapid adaptive and innate immune responses, including local humoral responses, maturation of local dendritic cells, and activation of natural killer cells. This provided near-sterilizing immunity against an antigenically unrelated viral infection. Thus, CD8+TRMcells rapidly trigger an antiviral state by amplifying receptor-derived signals from previously encountered pathogens.


2012 ◽  
Vol 50 (01) ◽  
Author(s):  
JP Böttcher ◽  
D Stabenow ◽  
S Debey-Pascher ◽  
A Staratschek-Jox ◽  
J Grell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document